您好,欢迎光临有路网!
动手学深度学习
QQ咨询:
有路璐璐:

动手学深度学习

  • 作者:阿斯顿·张(Aston Zhang) 李沐(Mu Li)(美) 扎卡里·C. 立
  • 出版社:人民邮电出版社
  • ISBN:9787115490841
  • 出版日期:2019年06月01日
  • 页数:412
  • 定价:¥85.00
  • 分享领佣金
    手机购买
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    内容提要
    本书旨在向读者交付有关深度学习的交互式学习体验。书中不仅阐述深度学习的算法原理,还演示它们的实现和运行。与传统图书不同,本书的每一节都是一个可以下载并运行的 Jupyter记事本,它将文字、公式、图像、代码和运行结果结合在了一起。此外,读者还可以访问并参与书中内容的讨论。 全书的内容分为3个部分:*部分介绍深度学习的背景,提供预备知识,并包括深度学习*基础的概念和技术;第二部分描述深度学习计算的重要组成部分,还解释近年来令深度学习在多个领域大获成功的卷积神经网络和循环神经网络;第三部分评价优化算法,检验影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用。 本书同时覆盖深度学习的方法和实践,主要面向在校大学生、技术人员和研究人员。阅读本书需要读者了解基本的Python编程或附录中描述的线性代数、微分和概率基础。
    目录
    对本书的赞誉 前言 如何使用本书 资源与支持 主要符号表 第 1 章 深度学习简介 1 1.1 起源 2 1.2 发展 4 1.3 成功案例 6 1.4 特点 7 小结 8 练习 8 第 2 章 预备知识 9 2.1 获取和运行本书的代码 9 2.1.1 获取代码并安装运行环境 9 2.1.2 更新代码和运行环境 11 2.1.3 使用GPU版的MXNet 11 小结12 练习12 2.2 数据操作 12 2.2.1 创���NDArray 12 2.2.2 运算 14 2.2.3 广播机制 16 2.2.4 索引 17 2.2.5 运算的内存开销 17 2.2.6 NDArray和NumPy相互变换18 小结19 练习19 2.3 自动求梯度 19 2.3.1 简单例子 19 2.3.2 训练模式和预测模式 20 2.3.3 对Python控制流求梯度 20 小结21 练习21 2.4 查阅文档 21 2.4.1 查找模块里的所有函数和类 21 2.4.2 查找特定函数和类的使用 22 2.4.3 在MXNet网站上查阅 23 小结 24 练习 24 第3 章 深度学习基础 25 3.1 线性回归 25 3.1.1 线性回归的基本要素 25 3.1.2 线性回归的表示方法 28 小结 30 练习 30 3.2 线性回归的从零开始实现 30 3.2.1 生成数据集 30 3.2.2 读取数据集 32 3.2.3 初始化模型参数 32 3.2.4 定义模型 33 3.2.5 定义损失函数 33 3.2.6 定义优化算法 33 3.2.7 训练模型 33 小结 34 练习 34 3.3 线性回归的简洁实现 35 3.3.1 生成数据集 35 3.3.2 读取数据集 35 3.3.3 定义模型 36 3.3.4 初始化模型参数 36 3.3.5 定义损失函数 37 3.3.6 定义优化算法 37 3.3.7 训练模型 37 小结 38 练习 38 3.4 softmax回归 38 3.4.1 分类问题 38 3.4.2 softmax回归模型 39 3.4.3 单样本分类的矢量计算表达式 40 3.4.4 小批量样本分类的矢量计算表达式 40 3.4.5 交叉熵损失函数 41 3.4.6 模型预测及评价 42 小结 42 练习 42 3.5 图像分类数据集(Fashion-MNIST) 42 3.5.1 获取数据集 42 3.5.2 读取小批量 44 小结 45 练习 45 3.6 softmax回归的从零开始实现 45 3.6.1 读取数据集 45 3.6.2 初始化模型参数 45 3.6.3 实现softmax运算 46 3.6.4 定义模型 46 3.6.5 定义损失函数 47 3.6.6 计算分类准确率 47 3.6.7 训练模型 48 3.6.8 预测 48 小结 49 练习 49 3.7 softmax回归的简洁实现 49 3.7.1 读取数据集 49 3.7.2 定义和初始化模型 50 3.7.3 softmax和交叉熵损失函数 50 3.7.4 定义优化算法 50 3.7.5 训练模型 50 小结 50 练习 50 3.8 多层感知机 51 3.8.1 隐藏层 51 3.8.2 激活函数 52 3.8.3 多层感知机 55 小结 55 练习 55 3.9 多层感知机的从零开始实现 56 3.9.1 读取数据集 56 3.9.2 定义模型参数 56 3.9.3 定义激活函数 56 3.9.4 定义模型 56 3.9.5 定义损失函数 57 3.9.6 训练模型 57 小结 57 练习 57 3.10 多层感知机的简洁实现 57 3.10.1 定义模型 58 3.10.2 训练模型 58 小结 58 练习 58 3.11 模型选择、欠拟合和过拟合 58 3.11.1 训练误差和泛化误差 59 3.11.2 模型选择 59 3.11.3 欠拟合和过拟合 60 3.11.4 多项式函数拟合实验 61 小结 65 练习 65 3.12 权重衰减 65 3.12.1 方法 65 3.12.2 高维线性回归实验 66 3.12.3 从零开始实现 66 3.12.4 简洁实现 68 小结 70 练习 70 3.13 丢弃法 70 3.13.1 方法 70 3.13.2 从零开始实现 71 3.13.3 简洁实现 73 小结 74 练习 74 3.14 正向传播、反向传播和计算图 74 3.14.1 正向传播 74 3.14.2 正向传播的计算图 75 3.14.3 反向传播 75 3.14.4 训练深度学习模型 76 小结 77 练习 77 3.15 数值稳定性和模型初始化 77 3.15.1 衰减和爆炸 77 3.15.2 随机初始化模型参数 78 小结 78 练习 79 3.16 实战Kaggle比赛:房价预测 79 3.16.1 Kaggle比赛 79 3.16.2 读取数据集 80 3.16.3 预处理数据集 81 3.16.4 训练模型 82 3.16.5 k 折交叉验证 82 3.16.6 模型选择 83 3.16.7 预测并在Kaggle提交结果 84 小结 85 练习 85 第4 章 深度学习计算 86 4.1 模型构造 86 4.1.1 继承Block类来构造模型 86 4.1.2 Sequential类继承自Block类 87 4.1.3 构造复杂的模型 88 小结 89 练习 90 4.2 模型参数的访问、初始化和共享 90 4.2.1 访问模型参数 90 4.2.2 初始化模型参数 92 4.2.3 自定义初始化方法 93 4.2.4 共享模型参数 94 小结 94 练习 94 4.3 模型参数的延后初始化 95 4.3.1 延后初始化 95 4.3.2 避免延后初始化 96 小结 96 练习 97 4.4 自定义层 97 4.4.1 不含模型参数的自定义层 97 4.4.2 含模型参数的自定义层 98 小结 99 练习 99 4.5 读取和存储 99 4.5.1 读写NDArray 99 4.5.2 读写Gluon模型的参数 100 小结 101 练习 101 4.6 GPU计算 101 4.6.1 计算设备 102 4.6.2 NDArray的GPU计算 102 4.6.3 Gluon的GPU计算 104 小结 105 练习 105 第5 章 卷积神经网络 106 5.1 二维卷积层 106 5.1.1 二维互相关运算 106 5.1.2 二维卷积层 107 5.1.3 图像中物体边缘检测 108 5.1.4 通过数据学习核数组 109 5.1.5 互相关运算和卷积运算 109 5.1.6 特征图和感受野 110 小结 110 练习 110 5.2 填充和步幅 111 5.2.1 填充 111 5.2.2 步幅 112 小结 113 练习 113 5.3 多输入通道和多输出通道 114 5.3.1 多输入通道 114 5.3.2 多输出通道 115 5.3.3 1×1卷积层 116 小结 117 练习 117 5.4 池化层 117 5.4.1 二维*大池化层和平均池化层 117 5.4.2 填充和步幅 119 5.4.3 多通道 120 小结 120 练习 121 5.5 卷积神经网络(LeNet) 121 5.5.1 LeNet模型 121 5.5.2 训练模型 122 小结 124 练习 124 5.6 深度卷积神经网络(AlexNet) 124 5.6.1 学习特征表示 125 5.6.2 AlexNet 126 5.6.3 读取数据集 127 5.6.4 训练模型 128 小结 128 练习 129 5.7 使用重复元素的网络(VGG) 129 5.7.1 VGG块 129 5.7.2 VGG网络 129 5.7.3 训练模型 130 小结 131 练习 131 5.8 网络中的网络(NiN) 131 5.8.1 NiN块 131 5.8.2 NiN模型 132 5.8.3 训练模型 133 小结 134 练习 134 5.9 含并行连结的网络(GoogLeNet) 134 5.9.1 Inception块 134 5.9.2 GoogLeNet模型 135 5.9.3 训练模型 137 小结 137 练习 137 5.10 批量归一化 138 5.10.1 批量归一化层 138 5.10.2 从零开始实现 139 5.10.3 使用批量归一化层的LeNet 140 5.10.4 简洁实现 141 小结 142 练习 142 5.11 残差网络(ResNet) 143 5.11.1 残差块 143 5.11.2 ResNet模型 145 5.11.3 训练模型 146 小结 146 练习 146 5.12 稠密连接网络(DenseNet) 147 5.12.1 稠密块 147 5.12.2 过渡层 148 5.12.3 DenseNet模型 148 5.12.4 训练模型 149 小结 149 练习 149 第6 章 循环神经网络 150 6.1 语言模型 150 6.1.1 语言模型的计算 151 6.1.2 n 元语法 151 小结 152 练习 152 6.2 循环神经网络 152 6.2.1 不含隐藏状态的神经网络 152 6.2.2 含隐藏状态的循环神经网络 152 6.2.3 应用:基于字符级循环神经网络的语言模型 154 小结 155 练习 155 6.3 语言模型数据集(歌词) 155 6.3.1 读取数据集 155 6.3.2 建立字符索引 156 6.3.3 时序数据的采样 156 小结 158 练习 159 6.4 循环神经网络的从零开始实现 159 6.4.1 one-hot向量 159 6.4.2 初始化模型参数 160 6.4.3 定义模型 160 6.4.4 定义预测函数 161 6.4.5 裁剪梯度 161 6.4.6 困惑度 162 6.4.7 定义模型训练函数 162 6.4.8 训练模型并创作歌词 163 小结 164 练习 164 6.5 循环神经网络的简洁实现 165 6.5.1 定义模型 165 6.5.2 训练模型 166 小结 168 练习 168 6.6 通过时间反向传播 168 6.6.1 定义模型 168 6.6.2 模型计算图 169 6.6.3 方法 169 小结 170 练习 170 6.7 门控循环单元(GRU) 170 6.7.1 门控循环单元 171 6.7.2 读取数据集 173 6.7.3 从零开始实现 173 6.7.4 简洁实现 175 小结 176 练习 176 6.8 长短期记忆(LSTM) 176 6.8.1 长短期记忆 176 6.8.2 读取数据集 179 6.8.3 从零开始实现 179 6.8.4 简洁实现 181 小结 181 练习 182 6.9 深度循环神经网络 182 小结 183 练习 183 6.10 双向循环神经网络 183 小结 184 练习 184 第7 章 优化算法 185 7.1 优化与深度学习 185 7.1.1 优化与深度学习的关系 185 7.1.2 优化在深度学习中的挑战 186 小结 188 练习 189 7.2 梯度下降和随机梯度下降 189 7.2.1 一维梯度下降 189 7.2.2 学习率 190 7.2.3 多维梯度下降 191 7.2.4 随机梯度下降 193 小结 194 练习 194 7.3 小批量随机梯度下降 194 7.3.1 读取数据集 195 7.3.2 从零开始实现 196 7.3.3 简洁实现 198 小结 199 练习 199 7.4 动量法 200 7.4.1 梯度下降的问题 200 7.4.2 动量法 201 ·6· 目 录 7.4.3 从零开始实现 203 7.4.4 简洁实现 205 小结 205 练习 205 7.5 AdaGrad算法206 7.5.1 算法 206 7.5.2 特点 206 7.5.3 从零开始实现 208 7.5.4 简洁实现 209 小结 209 练习 209 7.6 RMSProp算法 209 7.6.1 算法 210 7.6.2 从零开始实现 211 7.6.3 简洁实现 212 小结 212 练习 212 7.7 AdaDelta算法 212 7.7.1 算法 212 7.7.2 从零开始实现 213 7.7.3 简洁实现 214 小结 214 练习 214 7.8 Adam算法 215 7.8.1 算法 215 7.8.2 从零开始实现 216 7.8.3 简洁实现 216 小结 217 练习 217 第8 章 计算性能 218 8.1 命令式和符号式混合编程 218 8.1.1 混合式编程取两者之长 220 8.1.2 使用HybridSequential类构造模型 220 8.1.3 使用HybridBlock类构造模型 222 小结 224 练习 224 8.2 异步计算 224 8.2.1 MXNet中的异步计算 224 8.2.2 用同步函数让前端等待计算结果 226 8.2.3 使用异步计算提升计算性能 226 8.2.4 异步计算对内存的影响 227 小结 229 练习 229 8.3 自动并行计算 229 8.3.1 CPU和GPU的并行计算 230 8.3.2 计算和通信的并行计算 231 小结 231 练习 231 8.4 多GPU计算 232 8.4.1 数据并行 232 8.4.2 定义模型 233 8.4.3 多GPU之间同步数据 234 8.4.4 单个小批量上的多GPU训练 236 8.4.5 定义训练函数 236 8.4.6 多GPU训练实验 237 小结 237 练习 237 8.5 多GPU计算的简洁实现 237 8.5.1 多GPU上初始化模型参数 238 8.5.2 多GPU训练模型 239 小结 241 练习 241 第9 章 计算机视觉 242 9.1 图像增广242 9.1.1 常用的图像增广方法 243 9.1.2 使用图像增广训练模型 246 小结 250 练习 250 9.2 微调 250 热狗识别 251 小结 255 练习 255 目 录 ·7· 9.3 目标检测和边界框 255 边界框 256 小结 257 练习 257 9.4 锚框 257 9.4.1 生成多个锚框 257 9.4.2 交并比 259 9.4.3 标注训练集的锚框 260 9.4.4 输出预测边界框 263 小结 265 练习 265 9.5 多尺度目标检测 265 小结 268 练习 268 9.6 目标检测数据集(皮卡丘) 268 9.6.1 获取数据集 269 9.6.2 读取数据集 269 9.6.3 图示数据 270 小结 270 练习 271 9.7 单发多框检测(SSD) 271 9.7.1 定义模型 271 9.7.2 训练模型 275 9.7.3 预测目标 277 小结 278 练习 278 9.8 区域卷积神经网络(R-CNN)系列280 9.8.1 R-CNN 280 9.8.2 Fast R-CNN 281 9.8.3 Faster R-CNN 283 9.8.4 Mask R-CNN 284 小结 285 练习 285 9.9 语义分割和数据集 285 9.9.1 图像分割和实例分割 285 9.9.2 Pascal VOC2012语义分割数据集 286 小结 290 练习 290 9.10 全卷积网络(FCN) 290 9.10.1 转置卷积层 291 9.10.2 构造模型 292 9.10.3 初始化转置卷积层 294 9.10.4 读取数据集 295 9.10.5 训练模型 296 9.10.6 预测像素类别 296 小结 297 练习 297 9.11 样式迁移 298 9.11.1 方法 298 9.11.2 读取内容图像和样式图像 299 9.11.3 预处理和后处理图像 300 9.11.4 抽取特征 301 9.11.5 定义损失函数 302 9.11.6 创建和初始化合成图像 303 9.11.7 训练模型 304 小结 306 练习 306 9.12 实战Kaggle比赛:图像 分类(CIFAR-10)306 9.12.1 获取和整理数据集 307 9.12.2 图像增广 310 9.12.3 读取数据集 310 9.12.4 定义模型 311 9.12.5 定义训练函数 312 9.12.6 训练模型 312 9.12.7 对测试集分类并在Kaggle 提交结果 313 小结 313 练习 313 9.13 实战Kaggle比赛:狗的品种 识别(ImageNet Dogs) 314 9.13.1 获取和整理数据集 315 9.13.2 图像增广 316 9.13.3 读取数据集 317 9.13.4 定义模型 318 9.13.5 定义训练函数 318 9.13.6 训练模型 319 ·8· 目 录 9.13.7 对测试集分类并在Kaggle提交结果 319 小结 320 练习 320 第 10 章 自然语言处理 321 10.1 词嵌入(word2vec) 321 10.1.1 为何不采用one-hot向量 321 10.1.2 跳字模型 322 10.1.3 连续词袋模型 323 小结 325 练习 325 10.2 近似训练325 10.2.1 负采样 325 10.2.2 层序softmax 326 小结 327 练习 328 10.3 word2vec的实现328 10.3.1 预处理数据集 328 10.3.2 负采样 331 10.3.3 读取数据集 331 10.3.4 跳字模型 332 10.3.5 训练模型 333 10.3.6 应用词嵌入模型 335 小结 336 练习 336 10.4 子词嵌入(fastText) 336 小结 337 练习 337 10.5 全局向量的词嵌入(GloVe)337 10.5.1 GloVe模型 338 10.5.2 从条件概率比值理解GloVe模型 339 小结 340 练习 340 10.6 求近义词和类比词340 10.6.1 使用预训练的词向量 340 10.6.2 应用预训练词向量 341 小结 343 练习 343 10.7 文本情感分类:使用循环神经网络 343 10.7.1 文本情感分类数据集 343 10.7.2 使用循环神经网络的模型 345 小结 347 练习 347 10.8 文本情感分类:使用卷积神经网络(textCNN) 347 10.8.1 一维卷积层 348 10.8.2 时序*大池化层 349 10.8.3 读取和预处理IMDb数据集 350 10.8.4 textCNN模型 350 小结 353 练习 353 10.9 编码器-解码器(seq2seq)353 10.9.1 编码器 354 10.9.2 解码器 354 10.9.3 训练模型 355 小结 355 练习 355 10.10 束搜索 355 10.10.1 贪婪搜索 356 10.10.2 穷举搜索 357 10.10.3 束搜索 357 小结 358 练习 358 10.11 注意力机制 358 10.11.1 计算背景变量 359 10.11.2 更新隐藏状态 360 10.11.3 发展 361 小结 361 练习 361 10.12 机器翻译 361 10.12.1 读取和预处理数据集 361 10.12.2 含注意力机制的编码器-解码器 363 10.12.3 训练模型 365 10.12.4 预测不定长的序列 367 10.12.5 评价翻译结果 367 小结 369 练习 369 附录A 数学基础 370 附录B 使用 Jupyter 记事本 376 附录C 使用 AWS 运行代码 381 附录D GPU 购买指南 388 附录E 如何为本书做贡献 391 附录F d2lzh 包索引 395 附录G 中英文术语对照表 397 参考文献 402 索引 407

    与描述相符

    100

    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外