您好,欢迎光临有路网!
自动控制原理与设计(第八版)(英文版)
QQ咨询:
有路璐璐:

自动控制原理与设计(第八版)(英文版)

  • 作者:(美)Gene F. Franklin (吉恩 · F. 富兰克林) 等
  • 出版社:电子工业出版社
  • ISBN:9787121404061
  • 出版日期:2021年01月01日
  • 页数:904
  • 定价:¥169.00
  • 分享领佣金
    手机购买
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    内容提要
    本书是自动控制领域的经典著作,以自动控制系统的分析和设计为主线,在回顾自动控制系统动态响应和反馈控制的基本特性基础上,**介绍了自动控制系统的3种主流设计方法:根轨迹设计方法、频率响应设计方法和状态空间设计方法。此外,还阐述了非线性系统的分析与设计,给出了汽车发动机、无人机、半导体晶圆制造等应用的控制系统设计实例。全书在阐述自动控制原理和设计方法的过程中,适时地穿插了MATLAB仿真源代码和仿真实验结果。
    目录
    Chapter 1 An Overview and Brief History of Feedback Control A Perspective on Feedback Control Chapter Overview 1.1 A Simple Feedback System 1.2 A First Analysis of Feedback 1.3 Feedback System Fundamentals 1.4 A Brief History 1.5 An Overview of the Book Summary Review Questions Problems Chapter 2 Dynamic Models A Perspective on Dynamic Models Chapter Overview 2.1 Dynamics of Mechanical Systems 2.1.1 Translational Motion 2.1.2 Rotational Motion 2.1.3 Combined Rotation and Translation 2.1.4 Complex Mechanical Systems (W)① 2.1.5 Distributed Parameter Systems 2.1.6 Summary: Developing Equations of Motion for Rigid Bodies 2.2 Models of Electric Circuits 2.3 Models of Electromechanical Systems 2.3.1 Loudspeakers 2.3.2 Motors △ 2.3.3 Gears △ 2.4 Heat and Fluid-Flow Models 2.4.1 Heat Flow 2.4.2 Incompressible Fluid Flow 2.5 Historical Perspective Summary Review Questions Problems Chapter 3 Dynamic Response A Perspective on System Response Chapter Overview 3.1 Review of Laplace Transforms 3.1.1 Response by Convolution 3.1.2 Transfer Functions and Frequency Response 3.1.3 The ?_ Laplace Transform 3.1.4 Properties of Laplace Transforms 3.1.5 Inverse Laplace Transform by Partial-Fraction Expansion 3.1.6 The Final Value Theorem 3.1.7 Using Laplace Transforms to Solve Differential Equations 3.1.8 Poles and Zeros 3.1.9 Linear System Analysis Using Matlab 3.2 System Modeling Diagrams 3.2.1 The Block Diagram 3.2.2 Block-Diagram Reduction Using Matlab 3.2.3 Mason’s Rule and the Signal Flow Graph (W) 3.3 Effect of Pole Locations 3.4 Time-Domain Specifications 3.4.1 Rise Time 3.4.2 Overshoot and Peak Time 3.4.3 Settling Time 3.5 Effects of Zeros and Additional Poles 3.6 Stability 3.6.1 Bounded Input-Bounded Output Stability 3.6.2 Stability of LTI Systems 3.6.3 Routh’s Stability Criterion △ 3.7 Obtaining Models from Experimental Data: System Identification (W) △ 3.8 Amplitude and Time Scaling (W) 3.9 Historical Perspective Summary Review Questions Problems Chapter 4 A First Analysis of Feedback A Perspective on the Analysis of Feedback Chapter Overview 4.1 The Basic Equations of Control 4.1.1 Stability 4.1.2 Tracking 4.1.3 Regulation 4.1.4 Sensitivity 4.2 Control of Steady-State Error to Polynomial Inputs: System Type 4.2.1 System Type for Tracking 4.2.2 System Type for Regulation and Disturbance Rejection 4.3 The Three-Term Controller: PID Control 4.3.1 Proportional Control (P) 4.3.2 Integral Control (I) 4.3.3 Derivative Control (D) 4.3.4 Proportional Plus Integral Control (PI) 4.3.5 PID Control 4.3.6 Ziegler-Nichols Tuning of the PID Controller 4.4 Feedforward Control by Plant Model Inversion △ 4.5 Introduction to Digital Control (W) △ 4.6 Sensitivity of Time Response to Parameter Change (W) 4.7 Historical Perspective Summary Review Questions Problems Chapter 5 The Root-Locus Design Method A Perspective on the Root-Locus Design Method Chapter Overview 5.1 Root Locus of a Basic Feedback System 5.2 Guidelines for Determining a Root Locus 5.2.1 Rules for Determining a Positive (180°) Root Locus 5.2.2 Summary of the Rules for Determining a Root Locus 5.2.3 Selecting the Parameter Value 5.3 Selected Illustrative Root Loci 5.4 Design Using Dynamic Compensation 5.4.1 Design Using Lead Compensation 5.4.2 Design Using Lag Compensation 5.4.3 Design Using Notch Compensation △ 5.4.4 Analog and Digital Implementations (W) 5.5 Design Examples Using the Root Locus 5.6 Extensions of the Root-Locus Method 5.6.1 Rules for Plotting a Negative (0°) Root Locus △ 5.6.2 Successive Loop ClosureS △ 5.6.3 Time Delay (W) 5.7 Historical Perspective Summary Review Questions Problems Chapter 6 The Frequency-Response Design Method A Perspective on the Frequency-Response Design Method Chapter Overview 6.1 Frequency Response 6.1.1 Bode Plot Techniques 6.1.2 Steady-State Errors 6.2 Neutral Stability 6.3 The Nyquist Stability Criterion 6.3.1 The Argument Principle 6.3.2 Application of The Argument Principle to Control Design 6.4 Stability Margins 6.5 Bode’s Gain-Phase Relationship 6.6 Closed-Loop Frequency Response 6.7 Compensation 6.7.1 PD Compensation 6.7.2 Lead Compensation (W) 6.7.3 PI Compensation 6.7.4 Lag Compensation 6.7.5 PID Compensation 6.7.6 Design Considerations △ 6.7.7 Specifications in Terms of the Sensitivity Function △ 6.7.8 Limitations on Design in Terms of the Sensitivity Function △ 6.8 Time Delay 6.8.1 Time Delay via the Nyquist Diagram (W) △ 6.9 Alternative Presentation of Data 6.9.1 Nichols Chart 6.9.2 The Inverse Nyquist Diagram (W) 6.10?Historical Perspective Summary Review Questions Problems Chapter 7 State-Space Design A Perspective on State-Space Design Chapter Overview 7.1 Advantages of State-Space 7.2 System Description in State-Space 7.3 Block Diagrams and State-Space 7.4 Analysis of the State Equations 7.4.1 Block Diagrams and Canonical Forms 7.4.2 Dynamic Response from the State Equations 7.5 Control-Law Design for Full-State Feedback 7.5.1 Finding the Control Law 7.5.2 Introducing the Reference Input with Full-State Feedback 7.6 Selection of Pole Locations for Good Design 7.6.1 Dominant Second-Order Poles 7.6.2 Symmetric Root Locus (SRL) 7.6.3 Comments on the Methods 7.7 Estimator Design 7.7.1 Full-Order Estimators 7.7.2 Reduced-Order Estimators 7.7.3 Estimator Pole Selection 7.8 Compensator Design: Combined Control Law and Estimator (W) 7.9 Introduction of the Reference Input with the Estimator (W) 7.9.1 General Structure for the Reference Input 7.9.2 Selecting the Gain 7.10?Integral Control and Robust Tracking 7.10.1?Integral Control △ 7.10.2?Robust Tracking Control: The Error-Space Approach △ 7.10.3?Model-Following Design △ 7.10.4?The Extended Estimator △ 7.11?Loop Transfer Recovery △ 7.12?Direct Design with Rational Transfer Functions △ 7.13?Design for Systems with Pure Time Delay 7.14?Solution of State Equations (W) 7.15?Historical Perspective Summary Review Questions Problems Chapter 8 Digital Control A Perspective on Digital Control Chapter Overview 8.1 Digitization 8.2 Dynamic Analysis of Discrete Systems 8.2.1 z-Transform 8.2.2 z-Transform Inversion 8.2.3 Relationship Between s and z 8.2.4 Final Value Theorem 8.3 Design Using Discrete Equivalents 8.3.1 Tustin’s Method 8.3.2 Zero-Order Hold (ZOH) Method 8.3.3 Matched Pole-Zero (MPZ) Method 8.3.4 Modified Matched Pole-Zero (MMPZ) Method 8.3.5 Comparison of Digital Approximation Methods 8.3.6 Applicability Limits of the Discrete Equivalent Design Method 8.4 Hardware Characteristics 8.4.1 Analog-to-Digital (A/D) Converters 8.4.2 Digital-to-Analog Converters 8.4.3 Anti-Alias Prefilters 8.4.4 The Computer 8.5 Sample-Rate Selection 8.5.1 Tracking Effectiveness 8.5.2 Disturbance Rejection 8.5.3 Effect of Anti-Alias Prefilter 8.5.4 Asynchronous Sampling △ 8.6 Discrete Design 8.6.1 Analysis Tools 8.6.2 Feedback Properties 8.6.3 Discrete Design Example 8.6.4 Discrete Analysis of

    与描述相符

    100

    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外