深度学习是人工智能的前沿技术。本书深入浅出地介绍了深度学习的相关理论和TensorFlow实践,全书共8章。第1章给出了深度学习的基本概况。第2章详细介绍了神经网络相关知识,内容包括M-P神经元模型、感知机、多层神经网络。第3章介绍了被广泛认可的深度学习框架TensorFlow 2的安装流程与新特性。第4章详细介绍了TensorFlow 2的相关语法。第5章介绍了BP算法和常见的优化方法。第6章介绍了Keras模块的使用。第7章和第8章详细讲解了卷积神经网络和循环神经网络,并给出了相关的实战项目。 本书结构完整、行文流畅,是一本零基础入门、通俗易懂、图文并茂、理论结合实战的深度学习书籍。对于计算机、人工智能及相关专业的本科生和研究生,这是一本适合入门与系统学习的教材;对于从事深度学习产品研发的工程技术人员,本书也有一定的参考价值。