您好,欢迎光临有路网!
初等数论
QQ咨询:
有路璐璐:

初等数论

  • 作者:王丹华 杨海文 刘咏梅
  • 出版社:北京航空航天大学出版社
  • ISBN:9787811242751
  • 出版日期:2008年03月01日
  • 页数:208
  • 定价:¥18.00
  • 分享领佣金
    手机购买
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    内容提要
    本书共分八章,内容包括整除理论、同余、不定方程、同余方程、二次同余方程、原根和指数、实数的表示以及初等数论应用举例。书中配有大量习题,书末附有答案与提示以及一些与数论相关的阅读材料。
    本书积累了作者多年的教学经验,结合国内现有相关文献资料精心组织,编写时力求做到深入浅出、循序渐进、突出**、结构严谨、例题典型、注重基础和强调适用。
    本书可作为高等院校数学专业和计算机相关专业学生的教材,也可供高中数学教师教学参考。
    目录
    第1章 整除理论
    1.1 数的整除性
    1.2 带余数除法
    1.3 *大公因数
    1.4 *小公倍数
    1.5 辗转相除法
    1.6 素数与合数
    1.7 算术基本定理
    1.8 函数〔x〕与{x}及n!的标准分解式
    第2章 同 余
    2.1 同余的基本性质
    2.2 完全剩余系
    2.3 简化剩余系
    2.4 欧拉定理与费马小定理
    2.5 数论函数
    第3章 不定方程
    3.1 二元一次不定方程
    3.2 n元一次不定方程
    3.3 费马方程
    3.4 一些特殊不定方程的解法
    第4章同余方程
    4.1 一次同余方程
    4.2 一次同余方程组
    4.3 素数幂模的同余方程
    4.4 素数模同余方程及其解数
    第5章 二次同余方程
    5.1 二次剩余
    5.2 勒让德(Legendre)符号
    5.3 高斯二次互反律
    5.4 雅**(Jacobi)符号
    5.5 合数模的二次同余方程
    第6章 原根和指数
    6.1 阶的概念及其基本性质
    6.2 原根的存在性
    6.3 原根的个数与求法
    6.4 指数及其应用
    第7章 实数的表示
    7.1 实数的6进制表示
    7.2 连分数的概念与性质
    7.3 实数表示为简单连分数
    7.4 循环连分数
    第8章 数论应用举例
    8.1 单循环比赛
    8.2 星期几的计算
    8.3 RSA公钥密码方案
    8.4 ELGamal公钥密码方案
    附录A 相关阅读材料
    A.1 数论(number theory)简介
    A.2 哥德巴赫猜想(Goldbach conjecture)简介
    A.3 费马大定理(Fermat`s last theorem)简介
    A.4 梅森素数(Mersenne prime)简介
    附录B 习题参考答案及提示
    附录C 4000以内的素数及其*小原根表
    参考文献
    编辑推荐语
    本书介绍初等数论中整数的整除性、同余、不定方程、同余方程、二次同余方程、原根和指数、实数的表示以及初等数论的应用等内容。它不仅适合作为高等院校数学专业和计算机相关专业学生的教材,也可作为高中数学教师的教学参考书。 本书注重思维与兴趣的融合。每章开始通过引述部分达到各章之间的自然过渡;在章节内容叙述中,对重要方法给出必要的评注,达到深刻理解的目的;每章结尾给予概括性的小结;在本书*后,给出数论中几大经典问题的介绍,以增强教材的可读性。 本书适合教学和自学的双重需要,根据作者多年对初等数论的教学实践,结合高校初等数论课程的教学大纲编写而成,编写时力求做到深入浅出、循序渐进、突出**、结构严谨、例题典型、注重基础和强调适用。书中在注重基本概念和基本方法的归纳总结的同时,也为每一节安排了丰富的实例和习题,为了减轻习题解题难度,还给出了参考答案或提示。

    与描述相符

    100

    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外