您好,欢迎光临有路网!
实分析
QQ咨询:
有路璐璐:

实分析

  • 作者:斯坦恩
  • 出版社:世界图书出版公司
  • ISBN:9787510040535
  • 出版日期:2013年01月01日
  • 页数:402
  • 定价:¥59.00
  • 分享领佣金
    手机购买
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    内容提要
    Elias M.Stein、Rami Shakarchi所著的《实分析》由在国际上享有盛誉普林斯大林顿大学教授Stein等撰写而成,是一部为数学及相关专业大学二年级和三年级学生编写的教材,理论与实践并重。为了便于非数学专业的学生学习,全书内容简明、易懂,读者只需掌握微积分和线性代数知识。与本书相配套的教材《傅立叶分析导论》和《复分析》也已影印出版。
    目录
    Foreword Introduction 1 Fourier series: completion 2 Limits of continuous functio 3 Length of curves 4 Differentiation and integration 5 The problem of measure Chapter 1. Measure Theory 1 Prelhninaries 2 The exterior measure 3 Measurable sets and the Lebesgue measure 4 Measurable functio 4.1 Definition and basic properties 4.2 Approximation by simple functio or step functio 4.3 Littlewood's three principles 5 The Brunn-Minkowski inequality 6 Exercises 7 Problems Chapter 2. Integration Theory 1 The Lebesgue integral: basic properties and convergence theorems 2 The space L1 ofintegrable functio 3 Fubini's theorem 3.1 Statement and proof of the theorem 3.2 Applicatio of Fubini's theorem 4* A Fourier inveion formula 5 Exercises 6 Problems Chapter 3. Differentiation and Integration 1 Differentiation of the integral 1.1 The Hardy-Littlewood maximal function 1.2 The Lebesgue differentiation theorem 2 Good kernels and approximatio to the identity 3 Differentiability of functio 3.1 Functio of bounded variation 3.2 Absolutely continuous functio 3.3 Differentiability ofjump functio 4 Rectifiable curves and the isoperimetric inequality 4.1 Minkowski content of a curve 4.2 Isoperimetric inequality 5 Exercises 6 Problems Chapter 4. Hilbert Spaces: An Introduction 1 The Hilbert space L2 2 Hilbert spaces 2.1 Orthogonality 2.2 Unitary mappings 2.3 Pre-Hilbert spaces 3 Fourier series and Fatou's theorem 3.1 Fatou's theorem 4 Closed subspaces and orthogonal projectio 5 Linear traformatio 5.1 Linear functionals and the Riesz representation theorem 5.2 Adjoints 5.3 Examples 6 Compact operato 7 Exercises 8 Problems Chapter 5. Hilbert Spaces: Several Examples 1 The Fourier traform on L2 2 The Hardy space of the upper half-plane 3 Cotant coefficient partial differential equatio 3.1 Weaak solutio 3.2 The main theorem and key estimate 4 The Dirichlet principle 4.1 Harmonic functio 4.2 The boundary value problem and Dirichlet's principle 5 Exercises 6 Problems Chapter 6. Abstract Measure and Integration Theory 1 Abstract measure spaces 1.1 Exterior measures and Carathodory's theorem 1.2 Metric exterior measures 1.3 The exteion theorem 2 Integration o a measure space 3 Examples 3.1 Product measures and a general Fubini theorem 3.2 Integration formula for polar coordinates 3.3 Borel measures on and the Lebesgue-Stieltjes integral 4 Absolute continuity of measures 4.1 Signed measures 4.2 Absolute continuity 5* Ergodic theorems 5.1 Mean ergodic theorem 5.2 Maximal ergodic theorem 5.3 Pointwise ergodic theorem 5.4 Ergodic measure-preserving traformatio 6* Appendix: the spectral theorem 6.1 Statement of the theorem 6.2 Positive operato 6.3 Proof of the theorem 6.4 Spectrum 7 Exercises 8 Problems Chapter 7. Hausdorff Measure and Fractals 1 Hausdorff measure 2 Hausdorff dimeion 2.1 Examples 2.2 Self-similarity 3 Space-filling curves 3.1 Quartic intervals and dyadic squares 3.2 Dyadic correspondence 3.3 Cotruction of the Peano mapping 4* Besicovitch sets and regularity 4.1 The Radon traform 4.2 Regularity of sets when d ≥ 3 4.3 Besicovitch sets have dimeion 2 4.4 Cotruction of a Besicovitch set 5 Exercises 6 Problems Notes and References Bibliography Symbol Glossary Index
    编辑推荐语
    Elias M.Stein、Rami Shakarchi所著的《实分析》由在国际上享有盛誉普林斯大林顿大学教授Stein等撰写而成,是一部为数学及相关专业大学二年级和三年级学生编写的教材,理论与实践并重。为了便于非数学专业的学生学习,全书内容简明、易懂,读者只需掌握微积分和线性代数知识。与本书相配套的教材《傅立叶分析导论》和《复分析》也已影印出版。

    与描述相符

    100

    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外