本书是作者在清华大学数学科学系(1987—2003)及北京大学数学科学学院(2003—2009)给本科生讲授数学分析课的讲稿的基础上编成的。一方面,作者力求以近代数学(集合论,拓扑,测度论,微分流形和微分形式)的语言来介绍数学分析的基本知识,以使同学尽早熟悉近代数学文献中的表述方式。另一方面在篇幅允许的范围内,作者尽可能地介绍数学分析与其他学科(特别是物理学)的联系,以使同学理解自然现象一直是数学发展的重要源泉。全书分为三册。**册包括:集合与映射,实数与复数,极限,连续函数类,一元微分学和一元函数的Riemann积分;第二册包括:点集拓扑初步,多元微分学,测度和积分;第三册包括:Fourier分析初步,微分流形,重线性代数,微分形式和流形上的积分学。每章都配有丰富的习题,它除了提供同学训练和熟悉正文中的内容外,也介绍了许多补充知识。
本书可作为高等院校数学系攻读数学、应用数学、计算数学的本科生数学分析课程的教材或教学参考书,也可作为需要把数学当做重要工具的同学f例如攻读物理的同学)的教学参考书。