您好,欢迎光临有路网!
时间序列分析及其应用
QQ咨询:
有路璐璐:

时间序列分析及其应用

  • 作者:(美)罗伯特沙姆韦
  • 出版社:世界图书出版公司
  • ISBN:9787510004384
  • 出版日期:2009年05月01日
  • 页数:575
  • 定价:¥69.00
  • 分享领佣金
    手机购买
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    目录
    1 Characteristics of Time Series
    1.1 Introduction
    1.2 The Nature of Time Series Data
    1.3 Time Series Statistical Models
    1.4 Measures of Dependence: Autocorrelation and Cross-Correlation
    1.5 Stationary Time Series
    1.6 Estimation of Correlation
    1.7 Vector-Valued and Multidimensional Series
    Problems
    2 Time Series Regression and Exploratory Data Analysis
    2.1 Introduction
    2.2 Classical Regression in the Time Series Context
    2.3 Exploratory Data Analysis
    2.4 Smoothing in the Time Series Context
    Problems
    3 ARIMA Models
    3.1 Introduction
    3.2 Autoregressive Moving Average Models
    3.3 Difference Equations
    3.4 Autocorrelation and Partial Autocorrelation Functions
    3.5 Forecasting
    3.6 Estimation
    3.7 Integrated Models for Nonstationary Data
    3.8 Building ARIMA Models
    3.9 Multiplicative Seasonal ARIMA Models
    Problems
    4 Spectral Analysis and Filtering
    4.1 Introduction
    4.2 Cyclical Behavior and Periodicity
    4.3 The Spectral Density
    4.4 Periodogram and Discrete Fourier Transform
    4.5 Nonparametric Spectral Estimation
    4.6 Multiple Series and Cross-Spectra
    4.7 Linear Filters
    4.8 Parametric Spectral Estimation
    4.9 Dynamic Fourier Analysis and Wavelets
    4.10 Lagged Regression Models
    4.11 Signal Extraction and Optimum Filtering
    4.12 Spectral Analysis of Multidimensional Series
    Problems
    5 Additional Time Domain Topics
    5.1 Introduction
    5.2 Long Memory ARMA and Fractional Differencing
    5.3 GARCH Models
    5.4 Threshold Models
    5.5 Regression with Autocorrelated Errors
    5.6 Lagged Regression: Transfer Function Modeling
    5.7 Multivariate ARMAX Models
    Problems
    6 State-Space Models
    6.1 Introduction
    6.2 Filtering, Smoothing, and Forecasting
    6.3 Maximum Likelihood Estimation
    6.4 Missing Data Modifications
    6.5 Structural Models: Signal Extraction and Forecasting
    6.6 ARMAX Models in State-Space Form
    6.7 Bootstrapping State-Space Models
    6.8 Dynamic Linear Models with Switching
    6.9 Nonlinear and Non-normal State-Space Models Using Monte Carlo Methods
    6.10 Stochastic Volatility
    6.11 State-Space and ARMAX Models for Longitudinal Data Analysis
    Problems
    7 Statistical Methods in the Frequency Domain
    7.1 Introduction
    7.2 Spectral Matrices and Likelihood Functions
    7.3 Regression for Jointly Stationary Series
    7.4 Regression with Deterministic Inputs
    7.5 Random Coefficient Regression
    7.6 Analysis of Designed Experiments
    7.7 Discrimination and Cluster Analysis
    7.8 Principal Components and Factor Analysis
    7.9 The Spectral Envelope
    Problems
    Appendix A: Large Sample Theory
    A.1 Convergence Modes
    A.2 Central Limit Theorems
    A.3 The Mean and Autocorrelation Functions
    Appendix B: Time Domain Theory
    B.1 Hilbert Spaces and the Projection Theorem
    B.2 Causal Conditions for ARMA Models
    B.3 Large Sample Distribution of the AR(p) Conditional Least Squares Estimators
    B.4 The Wold Decomposition
    Appendix C: Spectral Domain Theory
    C.1 Spectral Representation Theorem
    C.2 Large Sample Distribution of the DFT and Smoothed Periodogram
    C.3 The Complex Multivariate Normal Distribution
    References
    Index

    与描述相符

    100

    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外