第1章 集合与映射
本章作为全书的基础和预备,介绍集合与映射及其基本概念和事实,目的是使读者熟悉这些术语、记号和性质。
1.1 集合与集族
假定读者已经熟悉集合及其运算,这里简要介绍它们,是为了统一术语和记号。
所谓集合是指具有某种属性的对象的集体,例如“所有正整数的集合z+”,“所有自然数的集合N”,“所有有理数的集合Q”和“所有实数的集合R”等,通常用大写英文字母A,B,C,…表示集合,用小写字母2,Y,z,t,…表示集合的成员(元素或点)a是集合A的元素,记作a∈A,也称元素a属于集合A,点a不是集合A的元素,记作a*A。
我们用两种方式表示集合的元素,把集合的所有元素一一列举出来的方法称为列举法,例如小于5的正整数的集合A={1,2,3,4},通过描述集合元素的共同特征来表示集合的方法,称为描述法,例如B={礼∈Nf2整除n),即偶数集,一般地,集合{x|x具有性质P,表示具有性质P的所有元素z构成的集合。
如果集合A的元素都是集合B的元素,则称A是JEi的子集,记作A c B或B D A,这时,称集合B包含集合A,或A包含于B,当A c B,与B C A同时成立时,则称集合A与集合B相等,记作A=B,当A c B且A≠B,称4是B的真子集。
……