第1章 航空燃气涡轮发动机主要类型及其性能指标
1.1 航空燃气涡轮发动机的主要类型
自1939年9月27日装有燃气涡轮喷气发动机(简称燃气涡轮发动机)的飞机在德国**试飞成功以来,航空燃气涡轮发动机有了飞速发展。与活塞式发动机相比,燃气涡轮发动机在结构上非常简单,它只是将转动的压气机和涡轮连接在同一根轴上,两者之间装有热源(燃烧室),空气连续不断地被吸入压气机,并在其中压缩增压后,进入燃烧室中喷油燃烧成为高温高压燃气,再进入涡轮中膨胀做功。显然,燃烧的膨胀功必然大于空气在压气机中被压缩所需要的压缩功,使得有部分富余功可以被利用。可见,燃气涡轮发动机的膨胀功可以分为两部分:一部分膨胀功通过传动轴传给压气机,用以压缩吸入燃气涡轮发动机的空气;另一部分膨胀功则对外输出,作为飞机、舰船、车辆或发电机等的动力装置。如图l—1所示即为典型的航空燃气涡轮发动机结构简图。
燃气涡轮发动机与活塞式发动机不同之处在于:活塞式发动机工作时,空气是间断地进入汽缸的,气体的压缩、燃烧和膨胀过程发生在同一汽缸中;而燃气涡轮发动机工作时,空气是连续不断地被吸入,气体的压缩、燃烧和膨胀过程分别在压气机、燃烧室、涡轮或尾喷管等不同部件中进行。活塞式发动机靠大尺寸的螺旋桨推动飞机前进。随着飞行速度增加,特别是接近声速时,飞机的阻力急剧增大,要求大幅度地增大发动机的功率,活塞式发动机功率的增加,主要依靠加大汽缸尺寸和数目,这样就加大了发动机的重量和尺寸。此外,在飞机飞行速度达到800~850 km/h时,螺旋桨的效率开始明显下降,使其产生的推力下降,无法满足进一步提高飞行速度的要求。这正是活塞式发动机不能突破“音障”的原因。与之相比,燃气涡轮发动机的重量显著减少,并且取消了螺旋桨,在很大的飞行速度范围内,燃气涡轮发动机的推力是随着飞行速度的增加而增加的。这样使飞机的飞行速度不但突破了“音障”,而且已超过声速3倍以上。
燃气发生器出口的高温高压燃气在尾喷管中膨胀加速,向后方高速喷射,产生反作用推力。在相同的燃气发生器条件下,可将燃气涡轮发动机燃气发生器出口的部分或大部分可用功,通过动力涡轮转变为轴功。轴功驱动螺旋桨的发动机就成为涡轮螺旋桨发动机,可简称为涡轮螺桨发动机;轴功驱动外涵压气机(常称为风扇)的发动机就成为涡轮风扇发动机,可简称为涡扇发动机。其结构简图分别如图1—2(a),(b)所示。
……