本书先从概率论的基础讲起,然后逐步深入到概率论在机器学习中的应用,*后结合机器学习实战案例,**介绍了概率论的概念及其在机器学习中的应用。通过本书读者不但可以系统地学习常见概率的相关知识,还能对机器学习开发有更为深入的理解。 本书共10章,涵盖的主要内容:机器学习简介;为什么机器学习需要概率论;概率的定义;集合和事件;独立性;概率的性质;常见的计算概率方法;离散型和连续型概率简介;离散型和连续型概率的期望值、方差和标准差;几种常见的离散型和连续型概率分布;条件概率;联合概率;边缘概率;贝叶斯理论;随机过程简介;马尔可夫链;隐马尔克夫模型;高斯过程;常见的机器学习Python库;机器学习分类算法和回归算法简介;概率论在分类算法和回归算法中的应用;常见的分类算法和回归算法;强化学习简介;有趣的机器人游戏;GAN;图片风格转换。 本书内容通俗易懂,案例丰富,实用性强,不仅等