您好,欢迎光临有路网!
深度学习的数学——使用Python语言
QQ咨询:
有路璐璐:

深度学习的数学——使用Python语言

  • 作者:[美]罗纳德·T.纽塞尔(Ronald T. Kneusel)
  • 出版社:人民邮电出版社
  • ISBN:9787115607775
  • 出版日期:2024年02月01日
  • 页数:238
  • 定价:¥89.80
  • 分享领佣金
    手机购买
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    内容提要
    深度学习是一门注重应用的学科。了解深度学习背后的数学原理的人,可以在应用深度学习解决实际问题时游刃有余。本书通过Python代码示例来讲解深度学习背后的关键数学知识,包括概率论、统计学、线性代数、微分等,并进一步解释神经网络、反向传播、梯度下降等深度学习领域关键知识背后的原理。 本书适合有一定深度学习基础、了解Pyho如编程语言的读者阅读,也可作为拓展深度学习理论的参考书。
    目录
    第 1 章 搭建舞台 1 1.1 组件安装 2 1.1.1 Linux 2 1.1.2 macOS 3 1.1.3 Windows 3 1.2 NumPy 4 1.2.1 定义数组 4 1.2.2 数据类型 4 1.2.3 二维数组 5 1.2.4 全 0 数组和全 1 数组 6 1.2.5 **索引 6 1.2.6 读写磁盘 8 1.3 SciPy 8 1.4 matplotlib 9 1.5 scikit-learn 11 1.6 小结 12 第 2 章 概率论 13 2.1 基础概念 13 2.1.1 样本空间和事件 14 2.1.2 随机变量 14 2.1.3 人类不擅于处理概率问题 15 2.2 概率法则 16 2.2.1 事件的概率 16 2.2.2 加法法则 18 2.2.3 乘法法则 19 2.2.4 加法法则的修正版 20 2.2.5 生日难题 20 2.2.6 条件概率 23 2.2.7 全概率公式 24 2.3 联合概率和边缘概率 25 2.3.1 联合概率表 25 2.3.2 概率的链式法则 29 2.4 小结 30 第 3 章 概率论进阶 31 3.1 概率分布 31 3.1.1 直方图与概率 32 3.1.2 离散型概率分布 34 3.1.3 连续型概率分布 39 3.1.4 **���限定理 42 3.1.5 大数法则 45 3.2 贝叶斯定理 45 3.2.1 回到判断女性是否患有乳腺癌的例子 46 3.2.2 更新先验 47 3.2.3 机器学习中的贝叶斯定理 48 3.3 小结 50 第 4 章 统计学 51 4.1 数据类型 51 4.1.1 定类数据 52 4.1.2 定序数据 52 4.1.3 定距数据 52 4.1.4 定比数据 52 4.1.5 在深度学习中使用定类数据 53 4.2 描述性统计量 54 4.2.1 均值和中位数 54 4.2.2 用于衡量变化的统计量 57 4.3 分位数和箱形图 60 4.4 缺失数据 64 4.5 相关性 66 4.5.1 皮尔森相关性 67 4.5.2 斯皮尔曼相关性 70 4.6 假设检验 71 4.6.1 假设 72 4.6.2 t 检验 73 4.6.3 曼-惠特尼 U 检验 77 4.7 小结 79 第 5 章 线性代数 80 5.1 标量、向量、矩阵和张量 80 5.1.1 标量 81 5.1.2 向量 81 5.1.3 矩阵 82 5.1.4 张量 82 5.2 用张量进行代数运算 84 5.2.1 数组运算 85 5.2.2 向量运算 86 5.2.3 矩阵乘法 93 5.2.4 克罗内克积 97 5.3 小结 98 第 6 章 线性代数进阶 99 6.1 方阵 99 6.1.1 为什么需要方阵 100 6.1.2 转置、迹和幂 101 6.1.3 特殊方阵 103 6.1.4 三角矩阵 104 6.1.5 行列式 104 6.1.6 逆运算 107 6.1.7 对称矩阵、正交矩阵和酉矩阵 108 6.1.8 对称矩阵的正定性 109 6.2 特征向量和特征值 110 6.3 向量范数和距离度量 113 6.3.1 L 范数和距离度量 113 6.3.2 协方差矩阵 114 6.3.3 马氏距离 116 6.3.4 K-L 散度 118 6.4 主成分分析 120 6.5 奇异值分解和伪逆 122 6.5.1 SVD 实战 123 6.5.2 SVD 的两个应用 124 6.6 小结 126 第 7 章 微分 127 7.1 斜率 127 7.2 导数 129 7.2.1 导数的正式定义 129 7.2.2 基本法则 130 7.2.3 三角函数的求导法则 133 7.2.4 指数函数和自然对数的求导法则 135 7.3 函数的极小值和极大值 137 7.4 偏导数 140 7.4.1 混合偏导数 142 7.4.2 偏导数的链式法则 142 7.5 梯度 143 7.5.1 梯度的计算 144 7.5.2 可视化梯度 146 7.6 小结 148 第 8 章 矩阵微分 149 8.1 一些公式 149 8.1.1 关于标量的向量函数 150 8.1.2 关于向量的标量函数 151 8.1.3 关于向量的向量函数 152 8.1.4 关于标量的矩阵函数 152 8.1.5 关于矩阵的标量函数 153 8.2 一些性质 154 8.2.1 关于向量的标量函数 154 8.2.2 关于标量的向量函数 156 8.2.3 关于向量的向量函数 156 8.2.4 关于矩阵的标量函数 157 8.3 雅**矩阵和黑塞矩阵 158 8.3.1 雅**矩阵 159 8.3.2 黑塞矩阵 163 8.4 矩阵微分的一些实例 168 8.4.1 元素级运算求导 168 8.4.2 激活函数的导数 169 8.5 小结 171 第 9 章 神经网络中的数据流 172 9.1 数据的表示 172 9.1.1 在传统神经网络中表示数据 173 9.1.2 在深度卷积网络中表示数据 173 9.2 传统神经网络中的数据流 175 9.3 卷积神经网络中的数据流 178 9.3.1 卷积 179 9.3.2 卷积层 183 9.3.3 池化层 185 9.3.4 全连接层 186 9.3.5 综合应用 186 9.4 小结 189 第 10 章 反向传播 190 10.1 什么是反向传播 190 10.2 手把手进行反向传播 191 10.2.1 计算偏导数 192 10.2.2 用 Python 进行实现 194 10.2.3 训练和测试模型 197 10.3 全连接网络的反向传播 199 10.3.1 误差的反向传播 199 10.3.2 关于权重和偏置求偏导数 201 10.3.3 Python 实现代码 203 10.3.4 测试 Python 实现代码 206 10.4 计算图 208 10.5 小结 210 第 11 章 梯度下降 211 11.1 基本原理 211 11.1.1 一维函数的梯度下降 212 11.1.2 二维函数的梯度下降 214 11.2 随机梯度下降 219 11.3 动量机制 221 11.3.1 什么是动量 221 11.3.2 一维情况下的动量机制 222 11.3.3 二维情况下的动量机制 223 11.3.4 在训练模型时引入动量 225 11.3.5 涅斯捷洛夫动量 229 11.4 自适应梯度下降 231 11.4.1 RMSprop 231 11.4.2 Adagrad 232 11.4.3 Adam 233 11.4.4 关于优化器的一些思考 234 11.5 小结 235 附录 学无止境 236 概率与统计 236 线性代数 237 微积分 237 深度学习 237

    与描述相符

    100

    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外