本书基于真实数据集,全面系统地阐述现代计算机视觉实用技术、方法和实践,涵盖50多个计算机视觉问题。全书分为四部分:di一部分(第1~3章)介绍神经网络和PyTorch的基础知识,以及如何使用PyTorch构建并训练神经网络,包括输入数据缩放、批归一化、超参数调整等;第二部分(第4~10章)介绍如何使用卷积神经网络、迁移学习等技术解决更复杂的视觉相关问题,包括图像分类、目标检测和图像分割等;第三部分(第11~13章)介绍各种图像处理技术,包括自编码器模型和各种类型的GAN模型;第四部分(第14~18章)探讨将计算机视觉技术与NLP、强化学习和OpenCV等技术相结合来解决传统问题的新方法。本书内容丰富新颖,语言文字表述清晰,应用实例讲解详细,图例直观形象,适合PyTorch初中级读者及计算机视觉相关技术人员阅读。