本书分为两个部分,共12章。第1章到第5章介绍了大数据的本体论、机器学习的基本理论等内容,为具体场景、算法的实践奠定了基础。读者可以了解到,在工程实践中,对大数据的处理、转化方式与人类学习知识并将其转化为实践的过程是多么相似。在对机器学习的介绍中,会对其数学原理、训练过程做基本的讲解,并辅以代码帮助读者了解真实场景中技术工具的使用。第6章到第12章提供了多个不同的用例,章节之间彼此独立,介绍了如何用人工智能技术(自然语言处理、模糊系统、遗传编程、群体智能、强化学习、网络**、认知计算)实现大数据自动化解决方案。 如果读者对 Java 编程语言、分布式计算框架、各种机器学习算法有一定的了解,那么本书可以帮助你建立一个全局观,从更广阔的视角来看待人工智能技术在大数据中的应用。如果读者对上述知识一无所知,但是对大数据人工智能的技术、业务非常感兴趣,那么可以通过本书获得从零到一的认知提升。