您好,欢迎光临有路网!
离散数学及其应用(英文版·原书第8版)
QQ咨询:
有路璐璐:

离散数学及其应用(英文版·原书第8版)

  • 作者:(美)肯尼思·H. 罗森(Kenneth H. Rosen)
  • 出版社:机械工业出版社
  • ISBN:9787111645306
  • 出版日期:2020年01月01日
  • 页数:992
  • 定价:¥139.00
  • 猜你也喜欢

    分享领佣金
    手机购买
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    内容提要
    本书是经典的离散数学教材,被全球数百所大学广为采用。书中全面而系统地介绍了离散数学的理论和方法,主要包括:逻辑和证明,集合、函数、序列、求和与矩阵,算法,数论和密码学,归纳与递归,计数,离散概率,关系,图,树,布尔代数,计算模型。全书取材广泛,除包括定义、定理的严格陈述外,还配备大量的例题、图表、应用实例和练习。第8版做了与时俱进的更新,成为更加实用的教学工具。本书可作为高等院校数学、计算机科学和计算机工程等专业的教材,也可作为科技领域从业人员的参考书。
    目录
    1 The Foundations: Logic and Proofs....................................1 1.1 Propositional Logic............................................................1 1.2 Applications of Propositional Logic.............................................17 1.3 Propositional Equivalences....................................................26 1.4 Predicates and Quantifiers.....................................................40 1.5 Nested Quantifiers............................................................60 1.6 Rules of Inference.............................................................73 1.7 Introduction to Proofs.........................................................84 1.8 Proof Methods and Strategy....................................................96 End-of-Chapter Material.....................................................115 2 Basic Structures: Sets, Functions, Sequences, Sums, and atrices....................................121 2.1 Sets........................................................................121 2.2 Set Operations...............................................................133 2.3 Functions...................................................................147 2.4 Sequences and Summations...................................................165 2.5 Cardinality of Sets...........................................................179 2.6 Matrices....................................................................188 End-of-Chapter Material.....................................................195 3 Algorithms.........................................................201 3.1 Algorithms..................................................................201 3.2 The Growth of Functions.....................................................216 3.3 Complexity of Algorithms....................................................231 End-of-Chapter Materia.....................................................244 4 Number Theory and Cryptography..................................251 4.1 Divisibility and Modular Arithmetic...........................................251 4.2 Integer Representations and Algorithms........................................260 4.3 Primes and Greatest Common Divisors........................................271 4.4 Solving Congruences.........................................................290 4.5 Applications of Congruences.................................................303 4.6 Cryptography...............................................................310 End-of-Chapter Materia.....................................................324 5 Induction and Recursion............................................331 5.1 Mathematical Induction......................................................331 5.2 Strong Induction and Well-Ordering...........................................354 5.3 Recursive Definitions and Structural Induction..................................365 5.4 Recursive Algorithms........................................................381 5.5 Program Correctness.........................................................393 End-of-Chapter Materia.....................................................398 6 Counting...........................................................405 6.1 The Basics of Counting.......................................................405 6.2 The Pigeonhole Principle.....................................................420 6.3 Permutations and Combinations...............................................428 6.4 Binomial Coeficients and Identities...........................................437 6.5 Generalized Permutations and Combinations...................................445 6.6 Generating Permutations and Combinations....................................457 End-of-Chapter Materia.....................................................461 7 Discrete Probability.................................................469 7.1 An Introduction to Discrete Probability........................................469 7.2 Probability Theory......................................

    与描述相符

    100

    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外