第3章研究
3.1自适应学习的深度辨析
众多教育机构和研究计划制造出一系列重叠的名词概念,包括“自适性学习”“个性化学习”“区别式学习”,定义如此杂多,很难在交流层面达成共识。对于“自适应学习”概念的讨论,形成一种闹哄哄的局面。
那么,自适应学习到底是什么呢?
事实上,“自适应学习”这一概念*早由美国学者彼得·布鲁希洛夫斯基(Peter Brusilovsky)提出,他认为,自适应学习系统是收集学生在学习过程中与系统交互的数据,创建学习者模型,克服以往教育中体现的“无显著差异”问题。Brusilovsky P,Karagiannidis C,Sampson D. Layered Evaluation of Adaptive Learning Systems \[J\]. International Journal of Continuing Engineering Education and Life Long Learning,2004,14(4): 402421.美国教育部教育信息化办公室(U.S. Department of Education,Office of Educational Technology)提出,“可以根据学习者在课程过程中反馈回来的信息,动态地转变内容及内容呈现方式、学习策略等”。Oxman S,Wong W,Innovation D V X. White Paper: Adaptive Learning Systems\[EB/OL\].\[20151020\]. http://www.integratededsolutions.com/wpcontent/uploads/2015/10/DVxAdaptiveLearningWhitePaperFebruary20141.pdf.这些定义强调自适应学习系统自适应的实现是通过实时交互数据的收集,并且根据这些数据解析后提供个性化的服务,自适应是基于数据收集和解析的。
对于自适应学习平台的定义,国内与国外有一定差异。例如,国内学者徐鹏和王以宁对自适应学习的定义: “针对个体学习过程中的差异而提供适合个体特征的学习支持的学习系统。”徐鹏,王以宁.国内自适应学习系统的研究现状与反思\[J\].现代远距离教育,2011,(1): 25~27.黄伯平、赵蔚和余延冬等则从“连通性、内容、文化”三个层面阐述自适应的定义。
〖1〗自适应学习——人工智能时代的教育革命〖1〗第3章研究自适应学习平台是一种通过解析收集到的学生实时交互数据引导学生学习的学习系统,可在特定的时刻为特定的学生提供特定的知识。
可以看出,国内的定义相对来说较简洁,强调自适应学习系统能为学生提供个性化学习服务,而其实现途径是通过对学习者学习行为记录、学习风格、认知水平等基于学习者自身背景因素相关数据的综合分析,就此提供相应的个性化服务。
但总体来说,二者都强调计算机系统通过一系列学习分析技术帮助学习者实现个性化学习。自适应学习系统通过技术手段检测学生目前的学习水平和状态,并且就此不断地调节学生的学习过程和学习路径。这里涉及数据科学、教育统计学、学习科学、机器学习等领域的*新技术。
因而,根据这些定义,任何一个自适应学习系统都至少有以下三个基本的组成部分。
**是知识领域模型。首先将学习内容按设计好的知识图谱放到系统里,系统并不知道学生要学习什么,因此须告诉系统学习的内容。
第二是学习者模型。软件系统记录学生的基本状况、学习目标、学习风格、知识状态、学习经历等各种个人信息,并且通过实时不间断地测评,不断调整学生在每个知识点的水平。如果无法建立有效的学习者模型,就不能依据学习者的特征实现学习的适应性。
第三是教学模型。软件系统依据学生在每个知识点的能力水平,匹配并且找出*适合学生下一步学习的内容。
其中,*复杂的是学习者模型,也是实现个性化学习的关键。由于每个学生都不一样,学生各种特征在学习过程中会不断发生变化,并对学习效果产生影响,所以要实时检测每个学生在每个知识点的能力水平,这是一个非常复杂的过程。
自适应学习绝不是几个算法与公式“套上”题目测试那么简单,而是人工智能在教学中的应用,其关键之一是知识的吸收、维护、分析和应用。因此,学习者与知识之间的这个交互很难做,背后是海量的学习行为信息。
这也是自适应学习和适应性测评一个根本性的区别。
早在20世纪80年代的一些测评系统,如美国的G21托福机考系统,其实都具有一定的自适应功能,但这些测评系统只能依据知识领域模型给出一种对所有学生水平统一不变的定位测评。譬如,托福机考系统就是定位学生在语法、词汇方面是处于550、650的水平,还是处于720的水平。
自适应学习则不同,它通过测评不断地调整对学习者的定位,并根据做完的每一个题目或每一组题目对应的水平不断地为学生匹配*适合学习的知识。这其实相当于无数自适应测评的组合,是一个动态测评与调整的过程。传统的自适应测试与人工智能的自适应学习的对比见表3.1。表3.1传统的自适应测试与人工智能的自适应学习的对比
传统的自适应测试(基于预定规则)人工智能的自适应学习(基于机器学习)介绍运用一系列“如果A,那么B”的规则,程序的复杂度会因采用规则的数量、深度和广度而不同,也会受可选择内容的数量影响应用**数学公式及机器学习的方法分析一般学生成功掌握每一门课程内容知识点的概率,并和每个学生在该知识点的能力水平进行对比分析,从而实时为该学生选择*合适的学习内容优势以内容为导向,系统的功能有规律可循,更易于理解充分利用计算机的数据分析能力,为每个学生提供越来越**的自适应辅导。随着管理大量数据的云计算技术的进步,此类系统的计算能力以及相应的适应能力也随之越来越强不足适应学生的能力水平和需求相对受限,学生可能的学习路径是预先确定的,选择范围也相对有限技术上比较复杂,技术门槛和开发成本高,课程的开发一般需要由内容专家和教学设计专家一起协作完成其实,若规则能够预先设定,则其必定是有限的,可是各个学习者的学习状态与能力水平却是无穷的。
例如,一元一次方程与一元二次方程,学习者学完一元二次方程之后没有学会,对于a学习者,你能够让他跳回一元一次方程,那b学习者呢,你是让他跳回一元一次方程,还是求根,那c学习者呢,他或许连以前*基本的方程的移位都没有学会。因此,更**的系统是要充分利用计算机的运算能力,通过算法实现动态为学习者匹配下一步该学什么。
这就像以前我们听说的IBM的深蓝可以打败国际象棋大师,却不是说深蓝比国际象棋大师更聪明,只是深蓝充分地利用了计算机**的计算能力强行计算出所有可能,依据每一步下的棋,计算下一步棋该怎么走。
因而,一些教育科技专家主张,自适应学习的发展应分为3个阶段。
自适应测试: 以IRT模型动态调整题目,能够准确反映被测试者统一的水平,但无法深入到知识点的层面,不能对个体学生的学习起到指导作用。
自适应测量: 使用更细致的标签和复杂的算法,找到学生在知识和能力上的薄弱点,但不能做到真正的“解决问题”。
自适应学习: 发现问题后,能够依据学习者模型,通过**的知识推送解决个性化学习的问题。
也可以依据自适应学习系统对学习内容和学习水平的细分进行分类,大体分为粗放式和精细式。
粗放式自适应学习系统其实就是设置一些节点,如学生去上传统培训班的时候,培训机构给学生进行学前测评,到底是上七年级A班,还是B班,或者应该回到六年级去上培训。
若做得更精细,能够在每个单元、每个知识点给学生测评,学生若学会了,就能够进入下一步学习;若没有学会,就继续学习。
……