您好,欢迎光临有路网!
Python科学计算-(第2版)
QQ咨询:
有路璐璐:

Python科学计算-(第2版)

  • 作者:张若愚
  • 出版社:清华大学出版社
  • ISBN:9787302426585
  • 出版日期:2016年04月01日
  • 页数:716
  • 定价:¥118.00
  • 猜你也喜欢

    分享领佣金
    手机购买
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    内容提要
    本书详细介绍Python科学计算中*常用的扩展库NumPy、SciPy、matplotlib、Pandas、SymPy、TTK、Mayavi、OpenCV、Cython,涉及数值计算、界面制作、三维可视化、图像处理、提高运算效率等多方面的内容。所附光盘中包含所有章节的Notebook以及便携式运行环境WinPython,以方便读者运行书中所有实例。
    目录
    第1章 Python科学计算环境的安装与简介 1

    1.1 Python简介 1

    1.1.1 Python 2还是Python 3 1

    1.1.2 开发环境 2

    1.1.3 集成开发环境(IDE) 5

    1.2 IPython Notebook入门 9

    1.2.1 基本操作 10

    1.2.2 魔法(Magic)命令 12

    1.2.3 Notebook的显示系统 20

    1.2.4 定制IPython Notebook 24

    1.3 扩展库介绍 27

    1.3.1 数值计算库 27

    1.3.2 符号计算库 28

    1.3.3 绘图与可视化 28

    1.3.4 数据处理和分析 29

    1.3.5 界面设计 30

    1.3.6 图像处理和计算机视觉 31

    1.3.7 提高运算速度 31

    第2章 NumPy-快速处理数据 33

    2.1 ndarray对象 33

    2.1.1 创建 34

    2.1.2 元素类型 35

    2.1.3 自动生成数组 37

    2.1.4 存取元素 40

    2.1.5 多维数组 43

    2.1.6 结构数组 47

    2.1.7 内存结构 50

    2.2 ufunc函数 56

    2.2.1 四则运算 58

    2.2.2 比较运算和布尔运算 59

    2.2.3 自定义ufunc函数 61

    2.2.4 广播 62

    2.2.5 ufunc的方法 66

    2.3 多维数组的下标存取 68

    2.3.1 下标对象 68

    2.3.2 整数数组作为下标 70

    2.3.3 一个复杂的例子 72

    2.3.4 布尔数组作为下标 73

    2.4 庞大的函数库 74

    2.4.1 随机数 74

    2.4.2 求和、平均值、方差 77

    2.4.3 大小与排序 81

    2.4.4 统计函数 86

    2.4.5 分段函数 89

    2.4.6 操作多维数组 92

    2.4.7 多项式函数 96

    2.4.8 多项式函数类 98

    2.4.9 各种乘积运算 103

    2.4.10 广义ufunc函数 106

    2.5 实用技巧 110

    2.5.1 动态数组 110

    2.5.2 和其他对象共享内存 112

    2.5.3 与结构数组共享内存 115

    第3章 SciPy-数值计算库 117

    3.1 常数和特殊函数 117

    3.2 拟合与优化-optimize 119

    3.2.1 非线性方程组求解 120

    3.2.2 *小二乘拟合 121

    3.2.3 计算函数局域*小值 125

    3.2.4 计算全域*小值 127

    3.3 线性代数-linalg 128

    3.3.1 解线性方程组 129

    3.3.2 *小二乘解 130

    3.3.3 特征值和特征向量 132

    3.3.4 奇异值分解-SVD 134

    3.4 统计-stats 136

    3.4.1 连续概率分布 136

    3.4.2 离散概率分布 139

    3.4.3 核密度估计 140

    3.4.4 二项分布、泊松分布、伽玛分布 142

    3.4.5 学生t-分布与t检验 147

    3.4.6 卡方分布和卡方检验 151

    3.5 数值积分-integrate 154

    3.5.1 球的体积 154

    3.5.2 解常微分方程组 156

    3.5.3 ode类 157

    3.5.4 信号处理-signal 164

    3.5.5 中值滤波 164

    3.5.6 滤波器设计 165

    3.5.7 连续时间线性系统 167

    3.6 插值-interpolate 172

    3.6.1 一维插值 172

    3.6.2 多维插值 177

    3.7 稀疏矩阵-sparse 181

    3.7.1 稀疏矩阵的存储形式 182

    3.7.2 *短路径 183

    3.8 图像处理-ndimage 186

    3.8.1 形态学图像处理 187

    3.8.2 图像分割 192

    3.9 空间算法库-spatial 195

    3.9.1 计算*近旁点 195

    3.9.2 凸包 199

    3.9.3 沃罗诺伊图 201

    3.9.4 德劳内三角化 204

    第4章 matplotlib-绘制精美的图表 207

    4.1 快速绘图 207

    4.1.1 使用pyplot模块绘图 207

    4.1.2 面向对象方式绘图 210

    4.1.3 配置属性 211

    4.1.4 绘制多子图 212

    4.1.5 配置文件 215

    4.1.6 在图表中显示中文 217

    4.2 Artist对象 220

    4.2.1 Artist的属性 221

    4.2.2 Figure容器 223

    4.2.3 Axes容器 224

    4.2.4 Axis容器 226

    4.2.5 Artist对象的关系 230

    4.3 坐标变换和注释 231

    4.3.1 4种坐标系 234

    4.3.2 坐标变换的流水线 236

    4.3.3 制作阴影效果 240

    4.3.4 添加注释 241

    4.4 块、路径和集合 243

    4.4.1 Path与Patch 243

    4.4.2 集合 245

    4.5 绘图函数简介 255

    4.5.1 对数坐标图 255

    4.5.2 极坐标图 256

    4.5.3 柱状图 257

    4.5.4 散列图 258

    4.5.5 图像 259

    4.5.6 等值线图 261

    4.5.7 四边形网格 264

    4.5.8 三角网格 267

    4.5.9 箭头图 269

    4.5.10 三维绘图 273

    4.6 matplotlib技巧集 274

    4.6.1 使用agg后台在图像上绘图 274

    4.6.2 响应鼠标与键盘事件 277

    4.6.3 动画 285

    4.6.4 添加GUI面板 288

    第5章 Pandas-方便的数据分析库 291

    5.1 Pandas中的数据对象 291

    5.1.1 Series对象 291

    5.1.2 DataFrame对象 293

    5.1.3 Index对象 297

    5.1.4 MultiIndex对象 298

    5.1.5 常用的函数参数 300

    5.1.6 DataFrame的内部结构 301

    5.2 下标存取 303

    5.2.1 []操作符 304

    5.2.2 .loc[]和.iloc[]存取器 304

    5.2.3 获取单个值 306

    5.2.4 多级标签的存取 306

    5.2.5 query()方法 307

    5.3 文件的输入输出 307

    5.3.1 CSV文件 308

    5.3.2 HDF5文件 309

    5.3.3 读写数据库 313

    5.3.4 使用Pickle序列化 314

    5.4 数值运算函数 315

    5.5 时间序列 323

    5.5.1 时间点、时间段、时间间隔 323

    5.5.2 时间序列 326

    5.5.3 与NaN相关的函数 329

    5.5.4 改变DataFrame的形状 333

    5.6 分组运算 338

    5.6.1 groupby()方法 339

    5.6.2 GroupBy对象 340

    5.6.3 分组-运算-合并 341

    5.7 数据处理和可视化实例 347

    5.7.1 分析Pandas项目的提交历史 347

    5.7.2 分析空气质量数据 354

    第6章 SymPy-符号运算好帮手 359

    6.1 从例子开始 359

    6.1.1 封面上的经典公式 359

    6.1.2 球体体积 361

    6.1.3 数值微分 362

    6.2 数学表达式 365

    6.2.1 符号 365

    6.2.2 数值 367

    6.2.3 运算符和函数 368

    6.2.4 通配符 371

    6.3 符号运算 373

    6.3.1 表达式变换和化简 373

    6.3.2 方程 376

    6.3.3 微分 377

    6.3.4 微分方程 378

    6.3.5 积分 379

    6.4 输出符号表达式 380

    6.4.1 lambdify 381

    6.4.2 用autowrap()编译表达式 381

    6.4.3 使用cse()分步输出表达式 384

    6.5 机械运动模拟 385

    6.5.1 推导系统的微分方程 386

    6.5.2 将符号表达式转换为程序 388

    6.5.3 动画演示 389

    第7章 Traits & TraitsUI-轻松制作图形界面 393

    7.1 Traits类型入门 393

    7.1.1 什么是Traits属性 393

    7.1.2 Trait属性的功能 396

    7.1.3 Trait类型对象 399

    7.1.4 Trait的元数据 401

    7.2 Trait类型 403

    7.2.1 预定义的Trait类型 403

    7.2.2 Property属性 406

    7.2.3 Trait属性监听 408

    7.2.4 Event和Button属性 411

    7.2.5 动态添加Trait属性 412

    7.3 TraitsUI入门 413

    7.3.1 默认界面 414

    7.3.2 用View定义界面 415

    7.4 用Handler控制界面和模型 425

    7.4.1 用Handler处理事件 426

    7.4.2 Controller和UIInfo对象 429

    7.4.3 响应Trait属性的事件 431

    7.5 属性编辑器 432

    7.5.1 编辑器演示程序 433

    7.5.2 对象编辑器 436

    7.5.3 自定义编辑器 440

    7.6 函数曲线绘制工具 444

    第8章 TVTK与Mayavi-数据的三维可视化 451

    8.1 VTK的流水线(Pipeline) 452

    8.1.1 显示圆锥 452

    8.1.2 用ivtk观察流水线 455

    8.2 数据集 461

    8.2.1 ImageData 461

    8.2.2 RectilinearGrid 466

    8.2.3 StructuredGrid 467

    8.2.4 PolyData 470

    8.3 TVTK的改进 473

    8.3.1 TVTK的基本用法 474

    8.3.2 Trait属性 475

    8.3.3 序列化 476

    8.3.4 集合迭代 476

    8.3.5 数组操作 477

    8.4 TVTK可视化实例 478

    8.4.1 切面 479

    8.4.2 等值面 484

    8.4.3 流线 487

    8.4.4 计算圆柱的相贯线 491

    8.5 用mlab快速绘图 496

    8.5.1 点和线 497

    8.5.2 Mayavi的流水线 498

    8.5.3 二维图像的可视化 501

    8.5.4 网格面mesh 505

    8.5.5 修改和创建流水线 508

    8.5.6 标量场 511

    8.5.7 矢量场 513

    8.6 将TVTK和Mayavi嵌入界面 515

    8.6.1 TVTK场景的嵌入 516

    8.6.2 Mayavi场景的嵌入 518

    第9章 OpenCV-图像处理和计算机视觉 523

    9.1 图像的输入输出 523

    9.1.1 读入并显示图像 523

    9.1.2 图像类型 524

    9.1.3 图像输出 525

    9.1.4 字节序列与图像的相互转换 526

    9.1.5 视频输出 527

    9.1.6 视频输入 529

    9.2 图像处理 530

    9.2.1 二维卷积 530

    9.2.2 形态学运算 532

    9.2.3 填充-floodFill 534

    9.2.4 去瑕疵-inpaint 536

    9.3 图像变换 537

    9.3.1 几何变换 537

    9.3.2 重映射-remap 540

    9.3.3 直方图 543

    9.3.4 二维离散傅立叶变换 547

    9.3.5 用双目视觉图像计算深度信息 550

    9.4 图像识别 553

    9.4.1 用霍夫变换检测直线和圆 553

    9.4.2 图像分割 558

    9.4.3 SURF特征匹配 561

    9.5 形状与结构分析 564

    9.5.1 轮廓检测 565

    9.5.2 轮廓匹配 568

    9.6 类型转换 569

    9.6.1 分析cv2的源程序 570

    9.6.2 Mat对象 572

    9.3.3 在cv和cv2之间转换图像对象 574

    第10章 Cython-编译Python程序 575

    10.1 配置编译器 575

    10.2 Cython入门 577

    10.2.1 计算矢量集的距离矩阵 577

    10.2.2 将Cython程序编译成扩展模块 579

    10.2.3 C语言中的Python对象类型 581

    10.2.4 使用cdef关键字声明变量类型 582

    10.2.5 使用def定义函数 585

    10.2.6 使用cdef定义C语言函数 586

    10.3 **处理数组 587

    10.3.1 Cython的内存视图 587

    10.3.2 用降采样提高绘图速度 592

    10.4 使用Python标准对象和API 596

    10.4.1 操作list对象 596

    10.4.2 创建tuple对象 597

    10.4.3 用array.array作为动态数组 598

    10.5 扩展类型 600

    10.5.1 扩展类型的基本结构 600

    10.5.2 一维浮点数向量类型 601

    10.5.3 包装ahocorasick库 606

    10.6 Cython技巧集 612

    10.6.1 创建ufunc函数 613

    10.6.2 快速调用DLL中的函数 617

    10.6.3 调用BLAS函数 620

    第11章 实例 627

    11.1 使用泊松混合合成图像 627

    11.1.1 泊松混合算法 627

    11.1.2 编写代码 629

    11.1.3 演示程序 632

    11.2 经典力学模拟 632

    11.2.1 悬链线 633

    11.2.2 *速降线 638

    11.2.3 单摆模拟 641

    11.3 **算法 644

    11.3.1 读入数据 645

    11.3.2 **性能评价标准 646

    11.3.3 矩阵分解 647

    11.3.4 使用*小二乘法实现矩阵分解 648

    11.3.5 使用Cython迭代实现矩阵分解 651

    11.4 频域信号处理 654

    11.4.1 FFT知识复习 654

    11.4.2 合成时域信号 657

    11.4.3 观察信号的频谱 660

    11.4.4 卷积运算 671

    11.5 布尔可满足性问题求解器 675

    11.5.1 用Cython包装PicoSAT 678

    11.5.2 数独游戏 682

    11.5.3 扫雷游戏 686

    11.6 分形 693

    11.6.1 Mandelbrot集合 693

    11.6.2 迭代函数系统 699

    11.6.3 L-System分形 706

    11.6.4 分形山脉 710

    与描述相符

    100

    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外