您好,欢迎光临有路网!
统计物理学中的蒙特卡罗模拟-第5版
QQ咨询:
有路璐璐:

统计物理学中的蒙特卡罗模拟-第5版

  • 作者:世界图书出版公司
  • 出版社:世界图书出版公司
  • ISBN:9787510070761
  • 出版日期:2014年03月01日
  • 页数:200
  • 定价:¥39.00
  • 分享领佣金
    手机购买
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    内容提要
    统计物理学中的蒙特卡洛模拟主要处理凝聚态物理学的多体系统和相关物理学、化学及其他方面的计算模拟,甚至渗透到交通流、股票市场波动等等领域。书中描述了多变量蒙特卡洛模拟方法的理论背景,给出了初学者学习进行模拟和结果分析的系统演示。《统计物理学中的蒙特卡罗模拟(第5版,英文版)》是第五版,不仅包括经典方法,也包括蒙特卡洛模拟方法;增加了一章专门讲述自由能景观采样。 统计物理学中的蒙特卡罗模拟-第5版_世界图书出版公司_世界图书出版公司_
    目录
    1 Introduction: Purpose And Scope of This Volume, And Some General Comments
    2 Theoretical Foundations of The Monte Carlo Method And Its Applications In Statistical Physics
    2.1 Simple Sampling Versus Importance Sampling
    2.L.1 Models
    2.1.2 Simple Sampling
    2.1.3 Random Walks and Self-Avoiding Walks
    2.1.4 Thermal Averages By the Simple Sampling Method
    2.1.5 Advantages and Limitations of Simple Sampling
    2.1.6 Importance Sampling
    2.1.7 More About Models And Algorithms
    2.2 Organization of Monte Carlo Programs, and the Dynamic Interpretation of Monte Carlo Sampling
    2.2.1 First Comments on The Simulation of The Ising Model
    2.2.2 Boundary Conditions
    2.2.3 The Dynamic Interpretation of The Importance Sampling Monte Carlo Method
    2.2.4 Statistical Errors and Time-Displaced Relaxation Functions
    2.3 Finite-Size Effects
    2.3.1 Finite-Size Effects At The Percolation Transition
    2.3.2 Finite-Size Scaling For The Percolation Problem
    2.3.3 Broken Symmetry And Finite-Size Effects At Thermal Phase Transitions
    2.3.4 The Order Parameter Probability Distribution And Its Use to Justify Finite-Size Scaling And Phenomenological Renormalization
    2.3.5 Finite-Size Behavior of Relaxation Times
    2.3.6 Finite-Size Scaling Without "Hyperscaling".
    2.3.7 Finite-Size Scaling For First-Order Phase Transitions
    2.3.8 Finite-Size Behavior of Statistical Errors And the Problem Of Self-Averaging
    2.4 Remarks on The Scope of The Theory Chapter
    3 Guide to Practical Work With The Monte Carlo Method
    3.1 Aims of The Guide
    3.2 Simple Sampling
    3.2.1 Random Walk
    3.2.2 Nonreversal Random Walk
    3.2.3 Self-Avoiding Random Walk
    3.2.4 Percolation
    3.3 Biased Sampling
    3.3.1 Self-Avoiding Random Walk
    3.4 Importance Sampling
    3.4.1 Ising Model
    3.4.2 Self-Avoiding Random Walk
    4 Some Important Recent Developments Of The Monte Carlo Methodology
    4.1 Introduction
    4.2 Application of the Swendsen-Wang Cluster Algorithm To The Ising Model
    4.3 Reweighting Methods In The Study Of Phase Diagrams,First-Order Phase Transitions, And Interfacial Tensions
    4.4 Some Comments On Advances With Finite-Size Scaling Analyses
    5 Quantum Monte Carlo Simulations: An Introduction
    5.1 Quantum Statistical Mechanics Versus Classical Statistical Mechanics
    5.2 The Path Integral Quantum Monte Carlo Method
    5.3 Quantum Monte Carlo For Lattice Models
    5.4 Concluding Remarks
    6 Monte Carlo Methods For The Sampling of Free Energy Landscapes.
    6.1 Introduction And Overview
    6.2 Umbrella Sampling
    6.3 Multicanonical Sampling And Other "Extended Ensemble" Methods
    6.4 Wang-Landau Sampling
    6.5 Transition Path Sampling
    6.6 Concluding Remarks
    Appendix
    A.1 Algorithm For The Random Walk Problem
    A.2 Algorithm For Cluster Identification
    References
    Bibliography
    Subject Index

    与描述相符

    100

    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外