《高等学校规划教材·物理学:计算物理学基础》内容包括常用的数值计算方法及其在物理学中的初步应用。常用的数值计算方法有函数插值与拟合及快速傅里叶变换、数值积分与微分、线性代数方程组的求解、矩阵特征值和特征向量的计算、非线性方程根的求解、常微分方程的解法、解二阶偏微分方程的差分法及蒙特卡罗方法,应用数值计算方法解决物理问题的典型例子有大角度单摆的周期、用单缝衍射方法测量波长、金属电阻温度系数测量、菲涅尔衍射向夫琅禾费衍射的过渡、均匀带电直线段与均匀带电圆环的电场、载流直线段的磁感应强度、直流单臂电桥分析、简单剪切变形的主应变、平行共轴三线圈形成匀强磁场的条件、单摆运动规律分析、扩散现象研究、平行板电容器内部电势的计算、气体自由膨胀与麦克斯韦速率分布的模拟、塞平斯基三角形与羊齿叶图案的绘制等。对基本计算方法及其在物理学中的应用进行既相对分离又紧密关联的介绍、给出主要计算方法的MATLAB实现程序、有一定数量的物理计算习题是《高等学校规划教材·物理学:计算物理学基础》的三个突出特点。