本书介绍数据挖掘、统计学习和模式识别中与大数据分析相关的理论、方法及工具。理论学习的目标是使学生掌握复杂数据的分析与建模;方法学习的目标是使学生能够按照实证研究的规范和数据挖掘的步骤进行大数据研发,工具学习的目标是使学生熟练掌握一种数据分析的语言。本书内容由10章构成:大数据分析概述,数据挖掘流程,有指导的学习,无指导的学习,贝叶斯分类和因果学习,高维回归及变量选择,图模型,客户关系管理、社会网络分析、自然语言模型和文本挖掘。 本书可用做统计学、管理学、计算机科学等专业进行数据挖掘、机器学习、人工智能等相关课程的本科高年级、研究生教材或教学参考书。