1 Introduction 19
1.1 Overview of Electrical Engineering 20
1.2 Circuits, Currents, and Voltages 24
1.3 Power and Energy 31
1.4 Kirchhoff’s Current Law 34
1.5 Kirchhoff’s Voltage Law 37
1.6 Introduction to Circuit Elements 40
1.7 Introduction to Circuits 48
Summary 52
Problems 53
2 Resistive Circuits 64
2.1 Resistances in Series and Parallel 65
2.2 NetworkAnalysis by Using Series and Parallel Equivalents 69
2.3 Voltage-Divider and Current-Divider Circuits 73
2.4 Node-VoltageAnalysis 78
2.5 Mesh-CurrentAnalysis 97
2.6 Thévenin and Norton Equivalent Circuits 106
2.7 Superposition Principle 119
2.8 Wheatstone Bridge 122
Summary 124
Problems 126
3 Inductance and Capacitance 142
3.1 Capacitance 143
3.2 Capacitances in Series and Parallel 150
3.3 Physical Characteristics of Capacitors 152
3.4 Inductance 156
3.5 Inductances in Series and Parallel 161
3.6 Practical Inductors 162
3.7 Mutual Inductance 165
3.8 Symbolic Integration and Differentiation Using MATLAB 166
Summary 174
Problems 175
4 Transients 184
4.1 First-Order RC Circuits 185
4.2 DC Steady State 189
4.3 RL Circuits 191
4.4 RC and RL Circuits with General Sources 195
4.5 Second-Order Circuits 201
4.6 TransientAnalysis Using the MATLAB
Symbolic Toolbox 214
Summary 221
Problems 222
5 Steady-State Sinusoidal Analysis 233
5.1 Sinusoidal Currents and Voltages 234
5.2 Phasors 240
5.3 Complex Impedances 246
5.4 CircuitAnalysis with Phasors and Complex Impedances 250
5.5 Power inAC Circuits 256
5.6 Thévenin and Norton Equivalent Circuits 269
5.7 Balanced Three-Phase Circuits 274
5.8 ACAnalysis Using MATLAB 286
Summary 290
Problems 291
6 Frequency Response, Bode Plots, and Resonance 304
6.1 Fourier Analysis, Filters, and Transfer Functions 305
6.2 First-Order Lowpass Filters 313
6.3 Decibels, the Cascade Connection, and Logarithmic Frequency Scales 318
6.4 Bode Plots 322
6.5 First-Order Highpass Filters 325
6.6 Series Resonance 329
6.7 Parallel Resonance 334
6.8 Ideal and Second-Order Filters 337
6.9 Transfer Functions and Bode Plots with MATLAB 343
6.10 Digital Signal Processing 348
Summary 357
Problems 359
7 Logic Circuits 373
7.1 Basic Logic Circuit Concepts 374
7.2 Representation of Numerical Data in Binary Form 377
7.3 Combinatorial Logic Circuits 385
7.4 Synthesis of Logic Circuits 392
7.5 Minimization of Logic Circuits 399
7.6 Sequential Logic Circuits 403
Summary 414
Problems 415
8 Microcomputers 426
8.1 Computer Organization 427
8.2 Memory Types 430
8.3 Digital Process Control 432
8.4 The 68HC11 Microcontroller 435
8.5 The Instruction Set andAddressing Modes for the 68HC11 440
8.6 Assembly-Language Programming 448
Summary 453
Problems 454
9 Computer-Based Instrumentation Systems 459
9.1 Measurement Concepts and Sensors 460
9.2 Signal Conditioning 465
9.3 Analog-to-Digital Conversion 472
9.4 LabVIEW 475
Summary 488
Problems 489
10 Diodes 493
10.1 Basic Diode Concepts 494
10.2 Load-LineAnalysis of Diode Circuits 497
10.3 Zener-Diode Voltage-Regulator Circuits 500
10.4 Ideal-Diode Model 504
10.5 Piecewise-Linear Diode Models 506
10.6 Rectier Circuits 509
10.7 Wave-Shaping Circuits 514
10.8 Linear Small-Signal Equivalent
Circuits 519
Summary 524
Problems 525
11 Ampliers: Specications and External Characteristics 537
11.1 BasicAmplier Concepts 538
11.2 CascadedAmpliers 543
11.3 Power Supplies and Efciency 546
11.4 AdditionalAmplier Models 549
11.5 Importance ofAmplier Impedances in VariousApplications 552
11.6 IdealAmpliers 555
11.7 Frequency Response 556
11.8 LinearWaveform Distortion 561
11.9 Pulse Response 565
11.10 Transfer Characteristic and Nonlinear Distortion 568
11.11 DifferentialAmpliers 570
11.12 Offset Voltage, Bias Current, and Offset Current 574
Summary 579
Problems 580
12 Field-Effect Transistors 592
12.1 NMOS and PMOS Transistors 593
12.2 Load-Line Analysis of a Simple NMOS Amplier 600
12.3 Bias Circuits 603
12.4 Small-Signal Equivalent Circuits 606
12.5 Common-SourceAmpliers 611
12.6 Source Followers 614
12.7 CMOS Logic Gates 619
Summary 624
Problems 625
13 Bipolar Junction Transistors 633
13.1 Current and Voltage Relationships 634
13.2 Common-Emitter Characteristics 637
13.3 Load-LineAnalysis of a Common-EmitterAmplier 638
13.4 pnp Bipolar Junction Transistors 644
13.5 Large-Signal DC Circuit Models 646
13.6 Large-Signal DCAnalysis of BJT Circuits 649
13.7 Small-Signal Equivalent Circuits 656
13.8 Common-EmitterAmpliers 659
13.9 Emitter Followers 664
Summary 670
Problems 671
14 Operational Ampliers 681
14.1 Ideal OperationalAmpliers 682
14.2 InvertingAmpliers 683
14.3 NoninvertingAmpliers 690
14.4 Design of SimpleAmpliers 693
14.5 Op-Amp Imperfections in the Linear Range of Operation 698
14.6 Nonlinear Limitations 702
14.7 DC Imperfections 707
14.8 Differential and Instrumentation Ampliers 711
14.9 Integrators and Differentiators 713
14.10 Active Filters 716
Summary 721
Problems 722
15 Magnetic Circuits and Transformers 734
15.1 Magnetic Fields 735
15.2 Magnetic Circuits 744
15.3 Inductance andMutual Inductance 749
15.4 Magnetic Materials 753
15.5 Ideal Transformers 757
15.6 Real Transformers 764
Summary 769
Problems 769
16 DC Machines 780
16.1 Overview of Motors 781
16.2 Principles of DC Machines 790
16.3 Rotating DC Machines 795
16.4 Shunt-Connected and SeparatelyExcited DC Motors 801
16.5 Series-Connected DC Motors 806
16.6 Speed Control of DC Motors 810
16.7 DC Generators 814
Summary 819
Problems 820
17 AC Machines 829
17.1 Three-Phase Induction Motors 830
17.2 Equivalent-Circuit and Performance Calculations for Induction Motors 838
17.3 Synchronous Machines 847
17.4 Single-Phase Motors 859
17.5 Stepper Motors and Brushless DC
Motors 862
Summary 864
Problems 865
APPENDICES
A Complex Numbers 871
Summary 878
Problems 878
B Nominal Values and the Color Code for Resistors 880
C The Fundamentals of Engineering Examination 882
D Computer-Aided Circuit Analysis with SPICE-Based Software 886
E Answers for the Practice Tests 888
F Software andOn-Line Student Resources 896
G OrCAD 10.5 Tutorial Posted at www.pearsonhighered.com/hambleyinternational
Index 899