13世纪的中国,在求高次方程数值解以及解高次联立方程方面有重大贡献。1247年,秦九��给出了一般高次方程的数值解法,其程序和19世纪西方的鲁菲尼—霍纳解法基本一致。李冶创立的“天元术”和朱世杰使用的“四元术”能够求解一大类的高次联立方程。
16世纪,*伟大的数学成就是发现了三次方程和四次方程的求根公式。大约在1515年,意大利人费罗用代数方法求解了三次方程x3+mx=n,但他没有公开自己的成果,而是秘密地将其传给了他的学生费奥。大约在1535年,另一位意大利人塔塔利亚宣布自己发现了三次方程的代数解法。于是,塔塔利亚与费奥在米兰大教堂展开了一场求解三次方程的竞赛,*后以塔塔利亚胜利而归。后来,塔塔利亚在一位叫卡尔丹的教书匠的再三请求之下将三次方程的解法告诉了他,1545年卡尔丹在《大衍术》中给出了三次方程和四次方程的解法。这样用根式求解四次或四次以下方程的问题在16世纪已获得圆满解决。于是,人们开始探讨一般的五次方程的解法。1629年荷兰数学家吉拉德提出了代数基本定理:n次代数方程恰有n个根。1770年拉格朗日发表的《关于代数方程解的思考》一文讨论了在他之前人们所熟知的解二、三、四次方程的一切解法,并且指出这些解法对于五次及更高次方程是不存在的,但他没能给出严格的证明。直到1824年挪威的青年数学家阿贝尔自费出版了一本小册子《论代数方程,证明一般五次方程的不可解性》,在其中严格证明了以下事实:如果方程的次数n≥5,并且系数a1,a2,…,an看成是字母,那么任何一个由这些字母组成的根式都不可能是方程的根,这样,五次和高于五次的一般方程的求解问题就由阿贝尔解决了。阿贝尔还考虑了一些特殊的能用根式求解的方程,其中的一类现在被称为“阿贝尔方程”。那么什么样的特殊方程能够用根式来求解?这个问题是由法国青年数学家伽罗瓦解决的。他在1829—1831年间完成的几篇论文中,建立了判别方程根式可解的充分必要条件,从而宣告了方程根式可解这一经历了300年的难题的彻底解决。
……