您好,欢迎光临有路网!
计算机物理简明教程
QQ咨询:
有路璐璐:

计算机物理简明教程

  • 作者:张海燕
  • 出版社:上海交通大学出版社
  • ISBN:9787313066688
  • 出版日期:2010年08月01日
  • 页数:259
  • 定价:¥29.00
  • 猜你也喜欢

    分享领佣金
    手机购买
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    内容提要
    由于计算方法的深入发展和过去几十年中高速计算机的出现和普及,随着物理学基础理论的进一步突破,物理学家们逐步可以应用一些更严格和更全面的复杂模型,来定量研究实际的复杂体系的物理性质。
    本书介绍了“计算物理”学科中的几种基本常用方法,具体内容包括:误差分析、有限差分和内插法、数值积分方法、矩阵算法、常微分方程差分解法、偏微分方程解法、蒙特卡罗模拟方法等。 本书介绍了“计算物理”学科中的几种基本常用方法,具体内容包括
    :误差分析、有限差分和内插法、数值积分方法、矩阵算法、常微分方程
    差分解法、偏微分方程解法、蒙特卡罗模拟方法等。
    本书可供物理专业的本科生作为“计算物理”课程教材使用,也可供
    从事数值计算的相关专业的研究生参考。
    1 Approximations, Errors and the Taylor Series
    1.1 Approximations and Errors
    1.1.1 Approximations
    1.1.2 Round-off Errors
    1.1.3 Principles to Hold During the Numerica
    文章节选
    由于计算方法的深入发展和过去几十年中高速计算机的出现和普及,随着物理学基础理论的进一步突破,物理学家们逐步可以应用一些更严格和更全面的复杂模型,来定量研究实际的复杂体系的物理性质。
    本书介绍了“计算物理”学科中的几种基本常用方法,具体内容包括:误差分析、有限差分和内插法、数值积分方法、矩阵算法、常微分方程差分解法、偏微分方程解法、蒙特卡罗模拟方法等。 本书介绍了“计算物理”学科中的几种基本常用方法,具体内容包括
    :误差分析、有限差分和内插法、数值积分方法、矩阵算法、常微分方程
    差分解法、偏微分方程解法、蒙特卡罗模拟方法等。
    本书可供物理专业的本科生作为“计算物理”课程教材使用,也可供
    从事数值计算的相关专业的研究生参考。
    1 Approximations, Errors and the Taylor Series
    1.1 Approximations and Errors
    1.1.1 Approximations
    1.1.2 Round-off Errors
    1.1.3 Principles to Hold During the Numerical Calculations
    1.2 Truncation Errors and the Taylor Series
    1.2.1 Truncation Errors
    1.2.2 The Taylor Series
    1.2.3 Some Techniques in Numerical Computation
    1.3 Control of Total Numerical Error
    1.3.1 Truncation Error
    1.3.2 Total Numerical Error
    1.3.3 Control of Numerical Errors
    1.4 Problems for Chapter 1
    1.5 Computer Work for Chapter 1
    2 Interpolation and Finite Differences
    2.1 Finite Difference
    2.2 Newton Interpolation
    2.2.1 Basis Functions
    2.2.2 Newton Interpolation
    2.2.3 Newton's Divided-difference Interpolating Polynomial
    2.2.4 Errors of Newton Interpolation
    2.3 Interpolation Formulae
    2.3.1 NGF Interpolation
    2.3.2 NGB Interpolation
    2.3.3 ST Interpolation
    2.4 Difference Quotients
    2.4.1 DNGF Formulae
    2.4.2 DNGB Formulae
    2.4.3 DST Formulae
    2.5 Problems for Chapter 2
    2.6 Computer Work for Chapter 2
    3 Numerical Integration
    3.1 Numerical Integration Methods
    3.2 Newton-Cotes Quadrature Rules
    3.2.1 The Trapezoid Rule
    3.2.2 Simpson's Rule
    3.2.3 Error Estimation
    3.3 Composite and Adaptive Quadrature
    3.3.1 Composite Quadrature Rules
    3.3.2 Automatic and Adaptive Quadrature
    3.4 Numerical Integration of Multi-dimensional Integrals
    3.5 Problems for Chapter 3
    3.6 Computer Work for Chapter 3
    4 Matrix Algebra
    4.1 Types of Matrices
    4.2 Gauss Elimination and Back Substitution
    4.2.1 The Elimination of Unknowns
    4.2.2 The Algorithm of Gauss Elimination and Back Substitution
    4.2.3 Techniques for Improving Solutions
    4.3 LU Decomposition and Matrix Inversion
    4.3.1 Overview of LU Decomposition
    4.3.2 LU Decomposition Algorithm
    4.3.3 Procedure from Gauss Elimination
    4.3.4 The Matrix Inverse and Error Analysis
    4.4 Tridiagonal Matrices and Recursion Method
    4.4.1 Tri-diagonal Systems
    4.4.2 Recursion Method
    4.5 Iterative Methods
    4.6 Jacobi Method
    4.6.1 The Algorithm
    4.6.2 The Convergency
    4.7 Gauss-Seidel Method(GS)
    4.7.1 The Algorithm
    4.7.2 The Convergency
    4.8 Successive Over-Relaxation Method(SOR)
    4.9 Conjugate Gradient Method(CG)
    4.9.1 The Gradient
    4.9.2 Steepest Descent Method
    4.9.3 CG Method
    4.10 Problems for Chapter 4
    4.11 Computer Work for Chapter 4
    5 Ordinary Differential Equations
    5.1 Types of Differential Equations
    5.2 Euler Method
    5.2.1 Error Analysis
    5.2.2 Stability
    5.2.3 Application to Vector Equations
    5.3 The Leapfrog Methods
    5.3.1 Stability Analysis
    5.3.2 GeneraliZation to Multi-step Scheme
    5.4 Implicit Methods
    5.4.1 The Most Fundamental Scheme
    5.4.2 Implicit Scheme of Second Order -- Improved Euler Method
    5.5 The Runge-Kutta Method
    5.5.1 The Basic Idea of Runge-Kutta Method
    5.5.2 Stability Analysis
    5.5.3 Adaptive RK Method
    5.6 Predictor-Corrector(PC) Method
    5.7 Boundary Value Problems and Initial Value Problems of Second Order
    5.7.1 Shooting Method
    5.7.2 Numerov's Method
    5.8 Problems for Chapter 5
    5.9 Computer Work for Chapter 5
    6 Partial Differential Equations
    6.1 Types of Equations
    6.2 Elliptic Equations
    6.2.1 Two or More Dimensions
    6.2.2 ADI (alternating direction implicit) Method
    6.3 Hyperbolic Equations
    6.3.1 The FTCS Scheme
    6.3.2 The Lax Scheme
    6.3.3 Leapfrog Scheme
    6.4 Parabolic Equations
    6.4.1 A Simple Method -- FTCS Scheme
    6.4.2 Implicit Scheme of First Order
    6.4.3 Crank-Nicholson (CN) Scheme
    6.5 Five-point Stencil for 2D Poisson Equation in Electromagnetic Field
    6.6 Problems for Chapter 6
    6.7 Computer Work for Chapter 6
    7 Monte Carlo Methods and Simulation
    7.1 Probability
    7.1.1 Chance and Probability
    7.1.2 A One-dimensional Random Walk
    7.1.3 Probability Distribution
    7.1.4 Random Variables
    7.2 Random Number Generators
    7.2.1 Linear Gongruential Generators
    7.2.2 Shift Register Generators
    7.3 Non-uniform Probability Distribution
    7.3.1 Inverse Transform Method
    7.3.2 Generalized Transformation Method -- Box-Muller Teehnique
    7.4 Monte Carlo Integration
    7.4.1 Splash Method (Hit or Miss Method)
    7.4.2 Sample Mean Method
    7.4.3 Two Theorems in Probability Theory
    7.4.4 MC Error Analysis
    7.4.5 Importanee Sampling Technique
    7.5 Stoehastie Dynamics
    7.5.1 Random Sequences
    7.5.2 Stoehastie Dynamics
    7.6 Monte Carlo Simulation and Ising Model
    7.6.1 Simulation Methods
    7.6.2 Random Walk Methods
    7.6.3 The Ising Model
    7.6.4 The Metropolis Algorithm
    7.7 Problems for Chapter 7
    7.8 Computer Work for Chapter 7
    Bibliography
    目录
    由于计算方法的深入发展和过去几十年中高速计算机的出现和普及,随着物理学基础理论的进一步突破,物理学家们逐步可以应用一些更严格和更全面的复杂模型,来定量研究实际的复杂体系的物理性质。
    本书介绍了“计算物理”学科中的几种基本常用方法,具体内容包括:误差分析、有限差分和内插法、数值积分方法、矩阵算法、常微分方程差分解法、偏微分方程解法、蒙特卡罗模拟方法等。 本书介绍了“计算物理”学科中的几种基本常用方法,具体内容包括
    :误差分析、有限差分和内插法、数值积分方法、矩阵算法、常微分方程
    差分解法、偏微分方程解法、蒙特卡罗模拟方法等。
    本书可供物理专业的本科生作为“计算物理”课程教材使用,也可供
    从事数值计算的相关专业的研究生参考。
    1 Approximations, Errors and the Taylor Series
    1.1 Approximations and Errors
    1.1.1 Approximations
    1.1.2 Round-off Errors
    1.1.3 Principles to Hold During the Numerical Calculations
    1.2 Truncation Errors and the Taylor Series
    1.2.1 Truncation Errors
    1.2.2 The Taylor Series
    1.2.3 Some Techniques in Numerical Computation
    1.3 Control of Total Numerical Error
    1.3.1 Truncation Error
    1.3.2 Total Numerical Error
    1.3.3 Control of Numerical Errors
    1.4 Problems for Chapter 1
    1.5 Computer Work for Chapter 1
    2 Interpolation and Finite Differences
    2.1 Finite Difference
    2.2 Newton Interpolation
    2.2.1 Basis Functions
    2.2.2 Newton Interpolation
    2.2.3 Newton's Divided-difference Interpolating Polynomial
    2.2.4 Errors of Newton Interpolation
    2.3 Interpolation Formulae
    2.3.1 NGF Interpolation
    2.3.2 NGB Interpolation
    2.3.3 ST Interpolation
    2.4 Difference Quotients
    2.4.1 DNGF Formulae
    2.4.2 DNGB Formulae
    2.4.3 DST Formulae
    2.5 Problems for Chapter 2
    2.6 Computer Work for Chapter 2
    3 Numerical Integration
    3.1 Numerical Integration Methods
    3.2 Newton-Cotes Quadrature Rules
    3.2.1 The Trapezoid Rule
    3.2.2 Simpson's Rule
    3.2.3 Error Estimation
    3.3 Composite and Adaptive Quadrature
    3.3.1 Composite Quadrature Rules
    3.3.2 Automatic and Adaptive Quadrature
    3.4 Numerical Integration of Multi-dimensional Integrals
    3.5 Problems for Chapter 3
    3.6 Computer Work for Chapter 3
    4 Matrix Algebra
    4.1 Types of Matrices
    4.2 Gauss Elimination and Back Substitution
    4.2.1 The Elimination of Unknowns
    4.2.2 The Algorithm of Gauss Elimination and Back Substitution
    4.2.3 Techniques for Improving Solutions
    4.3 LU Decomposition and Matrix Inversion
    4.3.1 Overview of LU Decomposition
    4.3.2 LU Decomposition Algorithm
    4.3.3 Procedure from Gauss Elimination
    4.3.4 The Matrix Inverse and Error Analysis
    4.4 Tridiagonal Matrices and Recursion Method
    4.4.1 Tri-diagonal Systems
    4.4.2 Recursion Method
    4.5 Iterative Methods
    4.6 Jacobi Method
    4.6.1 The Algorithm
    4.6.2 The Convergency
    4.7 Gauss-Seidel Method(GS)
    4.7.1 The Algorithm
    4.7.2 The Convergency
    4.8 Successive Over-Relaxation Method(SOR)
    4.9 Conjugate Gradient Method(CG)
    4.9.1 The Gradient
    4.9.2 Steepest Descent Method
    4.9.3 CG Method
    4.10 Problems for Chapter 4
    4.11 Computer Work for Chapter 4
    5 Ordinary Differential Equations
    5.1 Types of Differential Equations
    5.2 Euler Method
    5.2.1 Error Analysis
    5.2.2 Stability
    5.2.3 Application to Vector Equations
    5.3 The Leapfrog Methods
    5.3.1 Stability Analysis
    5.3.2 GeneraliZation to Multi-step Scheme
    5.4 Implicit Methods
    5.4.1 The Most Fundamental Scheme
    5.4.2 Implicit Scheme of Second Order -- Improved Euler Method
    5.5 The Runge-Kutta Method
    5.5.1 The Basic Idea of Runge-Kutta Method
    5.5.2 Stability Analysis
    5.5.3 Adaptive RK Method
    5.6 Predictor-Corrector(PC) Method
    5.7 Boundary Value Problems and Initial Value Problems of Second Order
    5.7.1 Shooting Method
    5.7.2 Numerov's Method
    5.8 Problems for Chapter 5
    5.9 Computer Work for Chapter 5
    6 Partial Differential Equations
    6.1 Types of Equations
    6.2 Elliptic Equations
    6.2.1 Two or More Dimensions
    6.2.2 ADI (alternating direction implicit) Method
    6.3 Hyperbolic Equations
    6.3.1 The FTCS Scheme
    6.3.2 The Lax Scheme
    6.3.3 Leapfrog Scheme
    6.4 Parabolic Equations
    6.4.1 A Simple Method -- FTCS Scheme
    6.4.2 Implicit Scheme of First Order
    6.4.3 Crank-Nicholson (CN) Scheme
    6.5 Five-point Stencil for 2D Poisson Equation in Electromagnetic Field
    6.6 Problems for Chapter 6
    6.7 Computer Work for Chapter 6
    7 Monte Carlo Methods and Simulation
    7.1 Probability
    7.1.1 Chance and Probability
    7.1.2 A One-dimensional Random Walk
    7.1.3 Probability Distribution
    7.1.4 Random Variables
    7.2 Random Number Generators
    7.2.1 Linear Gongruential Generators
    7.2.2 Shift Register Generators
    7.3 Non-uniform Probability Distribution
    7.3.1 Inverse Transform Method
    7.3.2 Generalized Transformation Method -- Box-Muller Teehnique
    7.4 Monte Carlo Integration
    7.4.1 Splash Method (Hit or Miss Method)
    7.4.2 Sample Mean Method
    7.4.3 Two Theorems in Probability Theory
    7.4.4 MC Error Analysis
    7.4.5 Importanee Sampling Technique
    7.5 Stoehastie Dynamics
    7.5.1 Random Sequences
    7.5.2 Stoehastie Dynamics
    7.6 Monte Carlo Simulation and Ising Model
    7.6.1 Simulation Methods
    7.6.2 Random Walk Methods
    7.6.3 The Ising Model
    7.6.4 The Metropolis Algorithm
    7.7 Problems for Chapter 7
    7.8 Computer Work for Chapter 7
    Bibliography
    编辑推荐语
    由于计算方法的深入发展和过去几十年中高速计算机的出现和普及,随着物理学基础理论的进一步突破,物理学家们逐步可以应用一些更严格和更全面的复杂模型,来定量研究实际的复杂体系的物理性质。
    本书介绍了“计算物理”学科中的几种基本常用方法,具体内容包括:误差分析、有限差分和内插法、数值积分方法、矩阵算法、常微分方程差分解法、偏微分方程解法、蒙特卡罗模拟方法等。 本书介绍了“计算物理”学科中的几种基本常用方法,具体内容包括
    :误差分析、有限差分和内插法、数值积分方法、矩阵算法、常微分方程
    差分解法、偏微分方程解法、蒙特卡罗模拟方法等。
    本书可供物理专业的本科生作为“计算物理”课程教材使用,也可供
    从事数值计算的相关专业的研究生参考。
    1 Approximations, Errors and the Taylor Series
    1.1 Approximations and Errors
    1.1.1 Approximations
    1.1.2 Round-off Errors
    1.1.3 Principles to Hold During the Numerical Calculations
    1.2 Truncation Errors and the Taylor Series
    1.2.1 Truncation Errors
    1.2.2 The Taylor Series
    1.2.3 Some Techniques in Numerical Computation
    1.3 Control of Total Numerical Error
    1.3.1 Truncation Error
    1.3.2 Total Numerical Error
    1.3.3 Control of Numerical Errors
    1.4 Problems for Chapter 1
    1.5 Computer Work for Chapter 1
    2 Interpolation and Finite Differences
    2.1 Finite Difference
    2.2 Newton Interpolation
    2.2.1 Basis Functions
    2.2.2 Newton Interpolation
    2.2.3 Newton's Divided-difference Interpolating Polynomial
    2.2.4 Errors of Newton Interpolation
    2.3 Interpolation Formulae
    2.3.1 NGF Interpolation
    2.3.2 NGB Interpolation
    2.3.3 ST Interpolation
    2.4 Difference Quotients
    2.4.1 DNGF Formulae
    2.4.2 DNGB Formulae
    2.4.3 DST Formulae
    2.5 Problems for Chapter 2
    2.6 Computer Work for Chapter 2
    3 Numerical Integration
    3.1 Numerical Integration Methods
    3.2 Newton-Cotes Quadrature Rules
    3.2.1 The Trapezoid Rule
    3.2.2 Simpson's Rule
    3.2.3 Error Estimation
    3.3 Composite and Adaptive Quadrature
    3.3.1 Composite Quadrature Rules
    3.3.2 Automatic and Adaptive Quadrature
    3.4 Numerical Integration of Multi-dimensional Integrals
    3.5 Problems for Chapter 3
    3.6 Computer Work for Chapter 3
    4 Matrix Algebra
    4.1 Types of Matrices
    4.2 Gauss Elimination and Back Substitution
    4.2.1 The Elimination of Unknowns
    4.2.2 The Algorithm of Gauss Elimination and Back Substitution
    4.2.3 Techniques for Improving Solutions
    4.3 LU Decomposition and Matrix Inversion
    4.3.1 Overview of LU Decomposition
    4.3.2 LU Decomposition Algorithm
    4.3.3 Procedure from Gauss Elimination
    4.3.4 The Matrix Inverse and Error Analysis
    4.4 Tridiagonal Matrices and Recursion Method
    4.4.1 Tri-diagonal Systems
    4.4.2 Recursion Method
    4.5 Iterative Methods
    4.6 Jacobi Method
    4.6.1 The Algorithm
    4.6.2 The Convergency
    4.7 Gauss-Seidel Method(GS)
    4.7.1 The Algorithm
    4.7.2 The Convergency
    4.8 Successive Over-Relaxation Method(SOR)
    4.9 Conjugate Gradient Method(CG)
    4.9.1 The Gradient
    4.9.2 Steepest Descent Method
    4.9.3 CG Method
    4.10 Problems for Chapter 4
    4.11 Computer Work for Chapter 4
    5 Ordinary Differential Equations
    5.1 Types of Differential Equations
    5.2 Euler Method
    5.2.1 Error Analysis
    5.2.2 Stability
    5.2.3 Application to Vector Equations
    5.3 The Leapfrog Methods
    5.3.1 Stability Analysis
    5.3.2 GeneraliZation to Multi-step Scheme
    5.4 Implicit Methods
    5.4.1 The Most Fundamental Scheme
    5.4.2 Implicit Scheme of Second Order -- Improved Euler Method
    5.5 The Runge-Kutta Method
    5.5.1 The Basic Idea of Runge-Kutta Method
    5.5.2 Stability Analysis
    5.5.3 Adaptive RK Method
    5.6 Predictor-Corrector(PC) Method
    5.7 Boundary Value Problems and Initial Value Problems of Second Order
    5.7.1 Shooting Method
    5.7.2 Numerov's Method
    5.8 Problems for Chapter 5
    5.9 Computer Work for Chapter 5
    6 Partial Differential Equations
    6.1 Types of Equations
    6.2 Elliptic Equations
    6.2.1 Two or More Dimensions
    6.2.2 ADI (alternating direction implicit) Method
    6.3 Hyperbolic Equations
    6.3.1 The FTCS Scheme
    6.3.2 The Lax Scheme
    6.3.3 Leapfrog Scheme
    6.4 Parabolic Equations
    6.4.1 A Simple Method -- FTCS Scheme
    6.4.2 Implicit Scheme of First Order
    6.4.3 Crank-Nicholson (CN) Scheme
    6.5 Five-point Stencil for 2D Poisson Equation in Electromagnetic Field
    6.6 Problems for Chapter 6
    6.7 Computer Work for Chapter 6
    7 Monte Carlo Methods and Simulation
    7.1 Probability
    7.1.1 Chance and Probability
    7.1.2 A One-dimensional Random Walk
    7.1.3 Probability Distribution
    7.1.4 Random Variables
    7.2 Random Number Generators
    7.2.1 Linear Gongruential Generators
    7.2.2 Shift Register Generators
    7.3 Non-uniform Probability Distribution
    7.3.1 Inverse Transform Method
    7.3.2 Generalized Transformation Method -- Box-Muller Teehnique
    7.4 Monte Carlo Integration
    7.4.1 Splash Method (Hit or Miss Method)
    7.4.2 Sample Mean Method
    7.4.3 Two Theorems in Probability Theory
    7.4.4 MC Error Analysis
    7.4.5 Importanee Sampling Technique
    7.5 Stoehastie Dynamics
    7.5.1 Random Sequences
    7.5.2 Stoehastie Dynamics
    7.6 Monte Carlo Simulation and Ising Model
    7.6.1 Simulation Methods
    7.6.2 Random Walk Methods
    7.6.3 The Ising Model
    7.6.4 The Metropolis Algorithm
    7.7 Problems for Chapter 7
    7.8 Computer Work for Chapter 7
    Bibliography

    与描述相符

    100

    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外