本书所研究的定位一运输路线安排问题(LRP)是集成化物流系统中路径优化问题的一个重要分支,是任何一个大型物流配送企业必须要面临的问题。文中**要解决的是物流配送路径问题(LRP,VRP)的多目标优化求解算法和优化调度控制方法;采用智能优化算法(遗传算法等启发式搜索技术)同时结合聚类分析理论,求解物流配送优化路径问题。
本书研究工作的主要内容可以概括如下: 1.完成了物流配送路径问题研究综述,提出了基于运筹学基础的LRP问题模型的表示方法,建立了单目标LRP问题和多目标LRP问题的O—l混合整数规划模型。
2.根据集成化物流中的定位一配给问题的特点,提出了基于小波分析的启发式算法,仿真实例证明此算法能够有效地解决中、小规模的实际问题。
3.提出了解决集成化物流中的运输一车辆路线安排问题的聚类一改进遗传算法。此算法提出一种首先用优先级综合聚类分析法将客户分类,然后用带有控制开关系统的改进遗传算法求解多目标VRP的优化方法。该方法构造了一种随机开关,以此控制遗传算法中的变异运算,增加了群体的多样性,从一定程度上避免了遗传算法中的“局部*优现象”的发生。通过计算机仿真实验,证明了该算法的