您好,欢迎光临有路网!
金融工程和计算·数学·算法(影印版)
QQ咨询:
有路璐璐:

金融工程和计算·数学·算法(影印版)

  • 作者:吕育道
  • 出版社:高等教育出版社
  • ISBN:9787040239805
  • 出版日期:2008年05月01日
  • 页数:627
  • 定价:¥85.00
  • 分享领佣金
    手机购买
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    内容提要
    过去十年来,许多复杂的数学和计算技巧为分析金融市场而发展起来。有意在任何金融领域工作的学生和业界人士不仅必须掌握**的概念和数学模型,并且还必须学会怎样在计算上实现这些模型。本书全面讨论了金融工程背后的理论和数学,并强调了在当今资本市场中金融工程实际应用的计算。
    与大多数有关投资学、金融工程或衍生证券的书不同的是,本书从金融学的基本观念出发,逐步构建理论。在现代金融学中所需要的**数学概念以一种可接受的层次来阐释。这样,它就为金融方面的MBA、有志于从事金融业的理工科学生、计算金融的研究工作者、系统分析师和金融工程师在这一主题上提供了全面的基础。
    构建理论的同时,作者介绍了在定价、风险管理和证券组合管理方面的计算技巧的算法,并且对它们的效率进行了分析。对金融证券和衍生证券的定价是本书的**论题。各种各样的金融工具都得到讨论:债券、期权、期货、远期、利率衍生品、有抵押支持的证券、嵌入期权的债券,以及诸如此类的其他工具。为便于参考使用,每种金融工具都以简短而自成体系的一章来论述。
    目录
    Preface
    Useful Abbreviations
    1 Introduction
    1.1 Modern Finance: A Brief History
    1.2 Financial Engineering and Computation
    1.3 Financial Markets
    1.4 Computer Technology
    2 Analysis of Algorithms
    2.1 Complexity
    2.2 Analysis of Algorithms
    2.3 Description of Algorithms
    2.4 Software Implementation
    3 Basic Financial Mathematics
    3.1 Time Value of Money
    3.2 Annuities
    3.3 Amortization
    3.4 Yields
    3.5 Bonds
    4 Bond Price Volatility
    4.1 Price Volatility
    4.2 Duration
    4.3 Convexity
    5 Term Structure of Interest Rates
    5.1 Introduction
    5.2 Spot Rates
    5.3 Extracting Spot Rates from Yield Curves
    5.4 Static Spread
    5.5 Spot Rate Curve and Yield Curve
    5.6 Forward Rates
    5.7 Term Structure Theories
    5.8 Duration and Immunization Revisited
    6 Fundamental Statistical Concepts
    6.1 Basics
    6.2 Regression
    6.3 Correlation
    6.4 Parameter Estimation
    7 Option Basics
    7.1 Introduction
    7.2 Basics
    7.3 Exchange-Traded Options
    7.4 Basic Option Strategies
    8 Arbitrage in Option Pricing
    8.1 The Arbitrage Argument
    8.2 Relative Option Prices
    8.3 Put-Call Parity and Its Consequences
    8.4 Early Exercise of American Options
    8.5 Convexity of Option Prices
    8.6 The Option Portfolio Property
    9 Option Pricing Models
    9.1 Introduction
    9.2 The Binomial Option Pricing Model
    9.3 The Black-Scholes Formula
    9.4 Using the Black-Scholes Formula
    9.5 American Puts on a Non-Dividend-Paying Stock
    9.6 Options on a Stock that Pays Dividends
    9.7 Traversing the Tree Diagonally
    10 Sensitivity Analysis of Options
    10.1 Sensitivity Measures ("The Greeks")
    10.2 Numerical Techniques
    11 Extensions of Options Theory
    11.1 Corporate Securities
    11.2 Barrier Options
    11.3 Interest Rate Caps and Floors
    11.4 Stock Index Options
    11.5 Foreign Exchange Options
    11.6 Compound Options
    11.7 Path-Dependent Derivatives
    12 Forwards, Futures, Futures Options, Swaps
    12.1 Introduction
    12.2 Forward Contracts
    12.3 Futures Contracts
    12.4 Futures Options and Forward Options
    12.5 Swaps
    13 Stochastic Processes and Brownian Motion
    13.1 Stochastic Processes
    13.2 Martingales ("Fair Games")
    13.3 Brownian Motion
    13,4 Brownian Bridge
    14 Continuous-Time Financial Mathematics
    14.1 Stochastic Integrals
    14.2 Ito Processes
    14.3 Applications
    14.4 Financial Applications
    15 Continuous-Time Derivatives Pricing
    15.1 Partial Differential Equations
    15.2 The Black-Schotes Differential Equation
    15.3 Applications
    15.4 General Derivatives Pricing
    15.5 Stochastic Volatility
    16 Hedging
    16.1 Introduction
    16.2 Hedging and Futures
    16.3 Hedging and Options
    17 Trees
    17.1 Pricing Barrier Options with Combinatorial Methods
    17.2 Trinomial Tree Algorithms
    17.3 Pricing Multivariate Contingent Claims
    18 Numerical Methods
    18.1 Finite-Difference Methods
    18.2 Monte Carlo Simulation
    18.3 Quasi-Monte Carlo Methods
    19 Matrix Computation
    19.1 Fundamental Definitions and Results
    19.2 Least-Squares Problems
    19.3 Curve Fitting with Splines
    20 Time Series Analysis
    20.1 Introduction
    20.2 Conditional Variance Models for Price Volatility
    21 Interest Rate Derivative Securities
    21.1 Interest Rate Futures and Forwards
    21.2 Fixed-Income Options and Interest Rate Options
    21.3 Options on Interest Rate Futures
    21.4 Interest Rate Swaps
    22 Term Structure Fitting
    22.1 Introduction
    22.2 Linear Interpolation
    22.3 Ordinary Least Squares
    22.4 Splines
    22.5 The Nelson-Siegel Scheme
    23 Introduction to Term Structure Modeling
    23.1 Introduction
    23.2 The Binomial Interest Rate Tree
    23.3 Applications in Pricing and Hedging
    23.4 Volatility Term Structures
    24 Foundations of Term Structure Modeling
    24.1 Terminology
    24.2 Basic Relations
    24.3 Risk-Neutral Pricing
    24.4 The Term Structure Equation
    24.5 Forward-Rate Process
    24.6 The Binomial Model with Applications
    24.7 Black-Scholes Models
    25 Equilibrium Term Structure Models
    25.1 The Vasicek Model
    25.2 The Cox-Ingersoll-Ross Model
    25.3 Miscellaneous Models
    25.4 Model Calibration
    25.5 One-Factor Short Rate Models
    26 No-Arbitrage Term Structure Models
    26.1 Introduction
    26.2 The Ho-Lee Model
    26.3 The Black-Derman-Toy Model
    26.4 The Models According to Hull and White
    26.5 The Heath-Jarrow-Morton Model
    26.6 The Ritchken-Sankarasubramanian Model
    27 Fixed-Income Securities
    27.1 Introduction
    27.2 Treasury, Agency, and Municipal Bonds
    27.3 Corporate Bonds
    27.4 Valuation Methodologies
    27.5 Key Rate Durations
    28 Introduction to Mortgage-Backed Securities
    28.1 Introduction
    28.2 Mortgage Banking
    28.3 Agencies and Securitization
    28.4 Mortgage-Backed Securities
    28.5 Federal Agency Mortgage-Backed Securities Programs
    28.6 Prepayments
    29 Analysis of Mortgage-Backed Securities
    29.1 Cash Flow Analysis
    29.2 Collateral Prepayment Modeling
    29.3 Duration and Convexity
    29.4 Valuation Methodologies
    30 Collateralized Mortgage Obligations
    30.1 Introduction
    30.2 Floating-Rate Tranches
    30.3 PAC Bonds
    30.4 TAC Bonds
    30.5 CMO Strips
    30.6 Residuals
    31 Modern Portfolio Theory
    31.1 Mean-Variance Analysis of Risk and Return
    31.2 The Capital Asset Pricing Model
    31.3 Factor Models
    31.4 Value at Risk
    32 Software
    32.1 Web Programming
    32.2 Use of The Capitals Software
    32.3 Further Topics
    33 Answers to Selected Exercises
    Bibliography
    Glossary of Useful Notations
    Index
    编辑推荐语
    本书由剑桥大学出版社出版,原书名为:Financial Engineering and Computation: Principles, Mathematics, and Algorithms,是一本非常**的有关金融计算的图书。
    如今打算在金融领域工作的学生和专家不仅要掌握先进的概念和数学模型,还要学会如何在计算上实现这些模型。本书内容广泛,不仅介绍了金融工程背后的理论和数学,并把**放在了计算上,以便和金融工程在今天资本市场的实际运作保持一致。本书不同于大多数的有关投资、金融工程或者衍生证券方面的书,而是从金融的基本想法开始,逐步建立理论。作者提供了很多定价、风险评估以及项目组合管理的算法和理论。本书的**是有关金融产品和衍生证券、期权、期货、远期、利率衍生产品、抵押证券等等的定价问题。每个工具都有简要的介绍,每章都可以独立被引用。本书的算法均使用Java算法编程实现的,并可以在相关的网站上下载。
    本书可供金融MBA、金融学和金融工程方向的学生、计算金融的研究人员以及金融分析师参考使用。

    与描述相符

    100

    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外