您好,欢迎光临有路网!
应用泛函分析 第一卷
QQ咨询:
有路璐璐:

应用泛函分析 第一卷

  • 作者:(德)泽德勒
  • 出版社:世界图书出版公司
  • ISBN:9787510005442
  • 出版日期:2009年10月01日
  • 页数:481
  • 定价:¥59.00
  • 猜你也喜欢

    分享领佣金
    手机购买
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    目录
    Preface
    Prologue
    Contents of AMS Volume 109
    1 Banach Spaces and Fixed-Point Theorems
    1.1 Linear Spaces and Dimension
    1.2 Normed Spaces and Convergence
    1.3 Banach Spaces and the Cauchy Convergence Criterion
    1.4 Open and Closed Sets
    1.5 Operators
    1.6 The Banach Fixed-Point Theorem and the Iteration Method
    1.7 Applications to Integral Equations
    1.8 Applications to Ordinary Differential Equations
    1.9 Continuity
    1.10 Convexity
    1.11 Compactness
    1.12 Finite-Dimensional Banach Spaces and Equivalent Norms
    1.13 The Minkowski Functional and Homeomorphisms
    1.14 The Brouwer Fixed-Point Theorem
    1.15 The Schauder Fixed-Point Theorem
    1.16 Applications to Integral Equations
    1.17 Applications to Ordinary Differential Equations
    1.18 The Leray-Schauder Principle and a priori Estimates
    1.19 Sub-and Supersolutions, and the Iteration Method in Ordered Banach Spaces
    1.20 Linear Operators
    1.21 The Dual Space
    1.22 Infinite Series in Normed Spaces
    1.23 Banach Algebras and Operator Functions
    1.24 Applications to Linear Differential Equations in Banach Spaces
    1.25 Applications to the Spectrum
    1.26 Density and Approximation
    1.27 Summary of Important Notions
    2 Hilbert Spaces, Orthogonality, and the Dirichlet
    Principle
    2.1 Hilbert Spaces
    2.2 Standard Examples
    2.3 Bilinear Forms
    2.4 The Main Theorem on Quadratic Variational Problems
    2.5 The Functional Analytic Justification of the Dirichlet Principle
    2.6 The Convergence of the Ritz Method for Quadratic Variational Problems
    2.7 Applications to Boundary-Value Problems, the Method of Finite Elements, and Elasticity
    2.8 Generalized Functions and Linear Functionals
    2.9 Orthogonal Projection
    2.10 Linear Functionals and the Riesz Theorem
    2.11 The Duality Map
    2.12 Duality for Quadratic Variational Problems
    2.13 The Linear Orthogonality Principle
    2.14 Nonlinear Monotone Operators
    2.15 Applications to the Nonlinear Lax-Milgram Theorem and the Nonlinear Orthogonality Principle
    3 Hilbert Spaces and Generalized Fourier Series
    3.1 Orthonormal Series
    3.2 Applications to Classical Fourier Series
    3.3 The Schmidt Orthogonalization Method
    3.4 Applications to Polynomials
    3.5 Unitary Operators
    3.6 The Extension Principle
    3.7 Applications to the Fourier Transformation
    3.8 The Fourier Transform of Tempered Generalized Functions
    4 Eigenvalue Problems for Linear Compact Symmetric Operators
    ……
    5 Self-Adjoint Operators, the Friedrichs Extension and the Partial Differential Equations of Mathematical physics
    Epilogue
    Appendix
    References
    Hints for Further Reading
    List of Symbols
    List of Theorems
    List of the Most Important Definitions
    Subject Index

    与描述相符

    100

    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外