您好,欢迎光临有路网!
随机分析基础
QQ咨询:
有路璐璐:

随机分析基础

  • 作者:(丹)麦考斯基
  • 出版社:世界图书出版公司
  • ISBN:9787510005244
  • 出版日期:2009年08月01日
  • 页数:212
  • 定价:¥28.00
  • 分享领佣金
    手机购买
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    目录
    Reader Guidelines
    1 Preliminaries
    1.1 Basic Concepts fl'om Probability Theory
    1.1.1 Random Variables
    1.1.2 Random Vectors
    1.1.3 Independence and Dependence
    1.2 Stochastic Processes
    1.3 Brownian Motion
    1.3.1 Defining Properties
    1.3.2 Processes Derived from Brownian Motion
    1.3.3 Simulation of Brownian Sample Paths
    1.4 Conditional Expectation
    1.4.1 Conditional Expectation under Discrete Condition
    1.4.2 About a-Fields
    1.4.3 The General Conditional Expectation
    1.4.4 Rules for the Calculation of Conditional Expectations
    1.4.5 The Projection Property of Conditional Expectations
    1.5 Martingales
    1.5.1 Defining Properties
    1.5.2 Examples
    1.5.3 The Interpretation of a Martingale as a Fair Game
    2 The Stochastic Integral
    2.1 The Riemann and Riemann-Stieltjes Integrals
    2.1.1 The Ordinary Riemann Integral
    2.1.2 The Riemann-Stieltjes Integral
    2.2 The Ito Integral
    2.2.1 A Motivating Example
    2.2.2 The Ito Stochastic Integral for Simple Processes
    2.2.3 The General Ito Stochastic Integral
    2.3 The Ito Lemma
    2.3.1 The Classical Chain Rule of Differentiation
    2.3.2 A Simple Version of the Ito Lemma
    2.3.3 Extended Versions of the Ito Lemma
    2.4 The Stratonovich and Other Integrals
    3 Stochastic Differential Equations
    3.1 Deterministic Differential Equations
    3.2 Ito Stochastic Differential Equations
    3.2.1 What is a Stochastic Differential Equation?
    3.2.2 Solving Ito Stochastic Differential Equations by the ItoLemma
    3.2.3 Solving Ito Differential Equations via Stratonovich Calculus
    3.3 The General Linear Differential Equation
    3.3.1 Linear Equations with Additive Noise
    3.3.2 Homogeneous Equations with Multiplicative Noise
    3.3.3 The General Case
    3.3.4 The Expectation and Variance Functions of the Solution
    3.4 Numerical Solution
    3.4.1 The Euler Approximation
    3.4.2 The Milstein Approximation
    4 Applications of Stochastic Calculus in Finance
    4.1 The Black-Scholes Option Pricing Formula
    4.1.1 A Short Excursion into Finance
    4.1.2 What is an Option?
    4.1.3 A Mathematical Formulation of the Option Pricing Problem
    4.1.4 The Black and Scholes Formula
    4.2 A Useful Technique: Change of Measure
    4.2.1 What is a Change of the Underlying Measure?
    4.2.2 An Interpretation of the Black-Scholes Formula by Change of Measure
    Appendix
    A1 Modes of Convergence
    A2 Inequalities
    A3 Non-Differentiability and Unbounded Variation of Brownian Sample Paths
    A4 Proof of the Existence of the General Ito Stochastic Integral
    A5 The Radon-Nikodym Theorem
    AoProof of the Existence and Uniqueness of the Conditional Expectation
    Bibliography
    Index
    List of Abbreviations and Symbols

    与描述相符

    100

    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外