您好,欢迎光临有路网!
微积分(下第5版影印版)/海外优秀数学类教材系列丛书(海外优秀数学类教材系列丛书)(Calculus
QQ咨询:
有路璐璐:

微积分(下第5版影印版)/海外优秀数学类教材系列丛书(海外优秀数学类教材系列丛书)(Calculus

  • 作者:(加拿大)(Stewart.J.)史迪沃特
  • 出版社:高等教育出版社
  • ISBN:9787040140040
  • 出版日期:2004年01月01日
  • 页数:1168
  • 定价:¥43.80
  • 分享领佣金
    手机购买
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    内容提要
    《微积分》为海外**数学类教材系列丛书之一,从ThomsonLearning出版公司引进,本教材2003年全球发行约40余万册,在美国,占领了50%-80%的微积分教材市场,其用户包括耶鲁大学等**院校及众多一般院校600多所。
    《微积分》历经多年教学实践检验,内容翔实,叙述准确、对每个重要专题,均用语言地、代数地、数值地、图像地予以陈述。作者及其助手花费了三年时间,在各种媒体中寻找了*能反映应用微积分的教学实例,并把它们编入了教材。因此,《微积分》例、习题贴近生活实际,能充分调动学生学习的兴趣,此外。《微积分》语言朴实、流畅.可读性强,比较适合非英语**的学生阅读。
    值的一提的是,《微积分》较好地利用了科技。随书附赠两张CD-ROM,一张称为“感受微积分”,提供了一个实验环境,如同一个无声的老师,用探索、发现式的方法逐步���导学生分析并解决问题,还能链接到学习网站www.stewartcalculus.com。另一张称为“交直学习微积分”,包含有与微积分教学有关的视频与音频等。
    《微积分》适于国内高等院校工科各专业和广大非数学专业(含文科、经管专业)本、专科生作为双语教学的教材使用。
    文章节选
    插图:
    目录
    Preface xiv
    To the Student xxvi
    A Preview of Calculus 2
    1 Functions and Hodels 10
    1.1 Four Ways to Represent a Function 11
    1.2 Mathematical Models: A Catalog of Essential Functions 25
    i.3 New Functions from Old Functions 38
    1.4 Graphing Calculators and Computers 48
    1.5 Exponential Functions 55
    1.6 Inverse Functions and Logarithms 63
    Review 77
    Principles of Problem Solving 80
    2 Limils and Derivatives 8G
    2.1 The Tangent and Velocity Problems 87
    2.2 The Limit of a Function 92
    2.3 Calculating Limits Using the Limit Laws 104
    2.4 The Precise Definition of a Limit 114
    2.5 Continuity 124
    2.6 Limits at Infinity; Horizontal Asymptotes 135
    2.7 Tangents, Velocities, and Other Rates of Change 149
    2.8 Derivatives 158
    Writing Project o Early Methods for Finding Tangents 164
    2.9 The Derivative as a Function 165
    Review 176
    Problems Plus 180
    3 Lifferenliatiun Rules 182
    3.1 Derivatives of Polynomials and Exponential Functions 183
    3.2 The Product and Quotient Rules 192
    3.3 Rates of Change in the Natural and Social Sciences 199
    3.4 Derivatives of Trigonometric Functions 211
    3.5 The Chain Rule 217
    3.6 Implicit Differentiation 227
    3.7 Higher Derivatives 236
    Applied Project o Where Should a Pilot Start Descent? 243
    Applied Project o Building a Better Roller Coaster 243
    3.8 Derivatives of Logarithmic Functions 244
    3.9 Hyperbolic Functions 250
    3.10 Related Rates 256
    3.11 Linear Approximations and Differentials 262
    Laboratory Project o Taylor Polynomials 269
    Review 270
    Problems Plus 274
    4 Applications of gifferenliulion 278
    4.1 Maximum and Minimum Values 279
    Applied Project o The Calculus of Rainbows 288
    4.2 The Mean Value Theorem 290
    4.3 How Derivatives Affect the Shape of a Graph 296
    4.4 Indeterminate Forms and L'Hospital's Rule 307
    Writing Project o The Origins of L'Hospitars Rule 315
    4.5 Summary of Curve Sketching 316
    4.6 Graphing with Calculus and Calculators 324
    4.7 Optimization Problems 331
    Applied Project o The Shape of a Can 341
    4.8 Applications to Business and Economics 342
    4.9 Newton's Method 347
    4.10 Antiderivatives 353
    Review 361
    Problems Plus 365
    5 Inteorals 360
    5.1 Areas and Distances 369
    5.2 The Definite Integral 380
    Discovery Project o Area Functions 393
    5.3 The Fundamental Theorem of Calculus 394
    5.4 Indefinite Integrals and the Net Change Theorem 405
    Writing Project o Newton, keibniz, and the Invention of Calculus 413
    5.5 The Substitution Rule 414
    5.6 The Logarithm Defined as an Integral 422
    Review 430
    Problems Plus 434
    6 Applicotions of Inteoration 436
    6.1 Areas between Curves 437
    6.2 Volumes 444
    6.3 Volumes by Cylindrical Shells 455
    6.4 Work 460
    6.5 Average Value of a Function 464
    Applied Project o Where to Sit at the Movies 468
    Review 468
    Problems Plus 470
    7 Techniques of Integration 474
    7.1 Integration by Parts 475
    7.2 Trigonometric Integrals 482
    7.3 Trigonometric Substitution 489
    7.4 Integration of Rational Functions by Partial Fractions 496
    7.5 Strategy for Integration 505
    7.6 Integration Using Tables and Computer Algebra Systems 511
    Discovery Project o Patterns in Integrals 517
    7.7 Approximate Integration 518
    7.8 Improper Integrals 530
    Review 540
    Problems Plus 543
    8 Further Applications of Inteoralion 546
    8.1 Arc Length 547
    Discovery Project o Arc Length Contest 554
    8.2 Area of a Surface of Revolution 554
    Discovery Project o Rotating on a Slant 560
    8.3 Applications to Physics and Engineering 561
    8.4 Applications to Economics and Biology 571
    8.5 Probability 575
    Review 582
    Problems Plus 584
    9 Diffeiential Equations 586
    9.1 Modeling with Differential Equations 587
    9.2 Direction Fields and Euler's Method 592
    9.3 Separable Equations 601
    Applied Project How Fast Does a Tank Drain? 609
    Applied Project Which Is Faster, Going Up or Coming Down? 610
    9.4 Exponential Growth and Decay 611
    Applied Project Calculus and Baseball 622
    ……
    10 Parametric Equations and Polar Coordinates
    11 Infinite Sequences and Series
    12 Vectors and the Geometru of Space
    13 Vector Functions
    14 Partial Derivatives
    15 Multiple Integrals
    16 Vector Calculus
    17 Second-Order Offerential Equations
    Appendixes
    Index
    ……

    与描述相符

    100

    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外