第1篇 电力拖动直流调速系统
第5章 调节器的工程设计方法
本章任务是介绍电力拖动自动控制系统中调节器的工程设计方法,与经典理论的动态校正方法相比,工程设计方法具有设计方法简单,使用方便、容易掌握等优点。
5.1 调节器工程设计方法的基本思想和意义
采用经典控制理论博德图设计调速系统中每一个调节器时,必须先求出原始系统开环对数频率特性,再根据性能指标确定校正后系统的预期特性,经过反复试凑,才能确定调节器的特性,选定其结构并计算参数,而且还需要有熟练的设计技巧和经验。为此建立简便实用的工程设计方法是十分必要的。
生产工艺对控制系统动态性能的要求经计算和量化后可以表达为动态性能指标。
为了获得闭环运动控制系统的优良动态性能指标,必须设计可以改造系统的动态校正装置。在电力拖动(运动)自动控制系统中*常用的是串联校正装置。现代电力电子变流器的交、直流闭环控制系统,由于系统的模型阶次通过化简可成为低阶系统(典型二阶系统、典型三阶系统),因此,一般情况下,采用PID调节器作为串联校正装置就能获得所要求的动态性能指标。对动态性能要求较高的场合,可采用反馈校正装置。例如,在转速调节器上增设转速微分负反馈环节,可大大降低动态速降。
以往电力拖动(运动)自动控制系统PID调节器设计有一套成熟的、实用的工程设计方法。众所周知,现代电力拖动(运动)自动控制系统都是数字控制系统,因而调节器设计的主要工作是按照给定的动态性能��标设计数字PID调节器,实质上是将PID控制规律由编制的计算机程序来实现。然而,当连续系统的闭环等效时间常数很小,可以采用较高的采样频率时,PID调节器可用连续系统工程设计方法进行设计,然后再作离散化处理,就可以得到数字PID调节器的算法,可见连续系统工程设计方法在某些场合下还有它的应用价值。
……