1 ELECTROMAGNETIC FIELD THEORY
1.1 Introduction
1.2 Field Concept
1.3 Vector Analysis
1.4 Differential and Integral Formulations
1.5 Static Fields
1.6 Time-Varying Fields
1.7 Applications of Time-Varying Fields
1.8 Numerical Solutions
1.9 Further Study
2 VECTOR ANALYSIS
2.1 Introduction
2.2 Scalar and Vector Quantities
2.3 Vector Operations
2.4 The Coordinate Systems
2.5 Scalar and Vector Fields
2.6 Differential Elements of Length, Surface, and Volume
2.7 Line, Surface, and Volume Integrals
2.8 The Gradient of a Scalar Function
2.9 Divergence of a Vector Field
2.10 The Curl of a Vector Field
2.11 The Laplacian Operator
2.12 Some Theorems and Field Classifications
2.13 Vector Identities
2.14 Summary
2.15 Review Questions
2.16 Problems
3 ELECTROSTATICS
3.1 Introduction
3.2 Coulomb’s Law
3.3 Electric Field Intensity
3.4 Electric Flux and Electric Flux Density
3.5 The EIectric Potential
3.6 Electric Dipole
3.7 Materials in an Electric Field
3.8 Energy Stored in an EIectric Field
3.9 Boundary Conditions
3.10 Capacitor and Capacitance
3.11 Poisson’s and Laplace’s Equations
3.12 Method of Images
3.13 Summary
3.14 Review Questions
3.15 Problems
4 STEADY ELECTRIC CURRENTS
4.1 Introduction
4.2 Nature of Current and Current Density
4.3 Resistance of a Conductor
4.4 The Equation Of Continuity
4.S Relaxation Time
4.6 Joule’s Law
4.7 Steady Current in a Diode
4.8 Boundary Conditions for Current Density
4.9 Analogy Between D and J
4.10 The Electromotive Force
4.11 Summary
4.12 Review Questions
4.13 Problems
1 ELECTROMAGNETIC FIELD THEORY
1.1 Introduction
1.2 Field Concept
1.3 Vector Analysis
1.4 Differential and Integral Formulations
1.5 Static Fields
1.6 Time-Varying Fields
1.7 Applications of Time-Varying Fields
1.8 Numerical Solutions
1.9 Further Study
2 VECTOR ANALYSIS
2.1 Introduction
2.2 Scalar and Vector Quantities
2.3 Vector Operations
2.3.1 Vector Addition
2.3.2 Vector Subtraction
2.3.3 Multiplication of a Vector by a Scalar
2.3.4 Product of Two Vectors
2.4 The Coordinate Systems
2.4.1 Rectangular Coordinate System
2.4.2 Cylindrical Coordinate System
2.4.3 Spherical Coordinate System
2.5 Scalar and Vector Fields
2.6 Differential Elements of Length, Surface, and Volume
2.7 Line, Surface, and Volume Integrals
2.8 The Gradient of a Scalar Function
2.9 Divergence of a Vector Field
2.10 The Curl of a Vector Field
2.11 The Laplacian Operator
2.12 Some Theorems and Field Classifications
2.13 Vector Identities
2.14 Summary
2.15 Review Questions
2.16 Problems
3 ELECTROSTATICS
3.1 Introduction
3.2 Coulomb’s Law
3.3 Electric Field Intensity
3.3.1 Electric Field Intensity Due to Charge Distributions
3.4 Electric Flux and Electric Flux Density
3.4.1 Definition of Electric Flux
3.4.2 Gauss’s Law
3.5 The EIectric Potential
3.6 Electric Dipole
3.7 Materials in an Electric Field
3.8 Energy Stored in an EIectric Field
3.9 Boundary Conditions
3.10 Capacitor and Capacitance
3.11 Poisson’s and Laplace’s Equations
3.12 Method of Images
3.13 Summary
3.14 Review Questions
3.15 Problems
4 STEADY ELECTRIC CURRENTS
4.1 Introduction
4.2 Nature of Current and Current Density
4.3 Resistance of a Conductor
4.4 The Equation Of Continuity
4.S Relaxation Time
4.6 Joule’s Law
4.7 Steady Current in a Diode
4.8 Boundary Conditions for Current Density
4.9 Analogy Between D and J
4.10 The Electromotive Force
4.11 Summary
4.12 Review Questions
4.13 Problems
5 MAGNETOSTATICS
6 APPLICATIONS OF STATIC FIELDS
7 TIME-VARYING ELECTROMAGNETIC FIELDS
8 PLANE WAVE PROPAGATION
9 TRANSMISSION LINES
10 WAVEGUIDES AND CAVITY RESONATORS
11 ANTENNAS
12 COMPUTER-AIDED ANALYSIS OF ELECTROMAGNETIC FIELDS
APPENDIX A SMITH CHART AND ITS APPLICATIONS
APPENDIX B COMPUTER PROGRAMS FOR VARIOUS PROBLEMS
APPENDIX C USEFUL MATHEMATICAL TABLES
INDEX