您好,欢迎光临有路网!
数字集成电路:设计透视(第2版影印版)
QQ咨询:
有路璐璐:

数字集成电路:设计透视(第2版影印版)

  • 作者:拉贝(Rabaey J.M.) 钱德拉卡山(Chandrkasan A.) 尼科利奇(Nikolic
  • 出版社:清华大学出版社
  • ISBN:9787302079682
  • 出版日期:2004年03月01日
  • 页数:761
  • 定价:¥68.00
  • 分享领佣金
    手机购买
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    内容提要
    本书的特点主要包括: (1)将数字集成电路设计中电路与系统的视角统一起来,在系统深入地介绍了深亚微米条件下半导体器件的知识和*基本的反相器后,作者逐渐将这些基础知识引入到更加复杂的模块,比如门、寄存器、控制器、加法器、乘法器和存储器等。在深亚微米的设计条件下,设计者不仅仅需要考虑整个系统的设计问题,还要随时警惕在电路级——比如器件和连线所带来的问题。 (2)本书是**本将数字集成电路设计问题集中在深亚微米条件下的参考书,并且提供了一个深亚微米条件下的简晶体管模型。另外针对深亚微米条件下设计人员所面对的新挑战,例如互连线问题、信号完整性问题、时钟分布问题、功耗问题等,全书都做了非常详细的论述。(3)书中的内容紧扣当今数字集成电路设计的核心问题,并通过大量的设计实例向读者介绍了*新的设计技术和工程发展现状与趋势。
    目录
    Chapterl: Introduction
    1.1 A Historical Perspective
    1.2 Issues in Digital Integrated Circuit Design
    1.3 To Probe Further
    1.4 Exercises
    PART 1: A CIRCUIT PERSPECTIVE
    Chapter 2: The Devices
    2.1 Introduction
    2.2 The Diode
    2.2.1 A First Glance at the Device
    2.2.2 Static Behavior
    2.2.3 Dynamic, or Transient, Behavior
    2.2.4 The Actual Diode-Secondary Effects
    2.2.5 The SPICE Diode Model
    2.3 The MOS(FET) Transistor
    2.3.1 A First Glance at the Device
    2.3.2 Static Behavior
    2.3.3 Dynamic Behavior
    2.3.4 The Actual MOS Transistor-Secondary Effects
    2.3.5 SPICE Models for the MOS Transistor
    2.4 The Bipolar Transistor
    2.4.1 A First Glance at the Device
    2.4.2 Stalic Behavior
    2.4.3 Dynamic Behavior
    2.4.4 The Actual Bipolar Transistor-Secondary Effects
    2.4.5 SPICE Models for the Bipolar Transistor
    2.5 A Word on Process Variations
    2.6 Perspective: Future Device Developments
    2.7 Summary
    2.8 To Probe Further
    2.9 Exercises and Design Problems
    Appendlx A: Layout Design Rules
    Appendlx B: Small-Slgnal Models
    Chapter 3: The Inverter
    3.1 Introduction
    3.2 Delinitions and Properties
    3.2.1 Area and Complexity
    3.2.2 Functionality and Robustness: The Static Behavior
    3.2.3 Performance: The Dynamic Behavior
    3.2.4 Power and Energy Consumption
    3.3 The Static CMOS Invener
    3.3.1 A First Glance
    3.3.2 Evaluating the Robustness of the CMOS Inverter: The Static Behavior
    3.3.3 Perfonnance of CMOS Inverter: The Dynamic Behavior
    3.3.4 Power Consumption and Power-Delay Product
    3.3.5 A Look into the Future: Effects of Technology Scaling
    3.4 The Bipolar ECL Inverter
    3.4.1 Issues in Bipolar Digital Design: A Case Study
    3.4.2 The Emitter-Coupled Logic (ECL) Gate at a Glance
    3.4.3 Robustness and Noise Immunity: The Steady-State Characteristics
    3.4.4 ECL Switching Speed: Thc Transient Behavior
    3.4.5 Power Consumption
    3.4.6 Looking Ahead: Scaling the Technology
    3.5 Perspective: Area, Perfonnance, and Dissipation
    3.6 Summary
    3.7 To Probe Further
    3.8 Exercises and Design Problems
    Chapter 4: Designing Combinational Logk Cates in CMOS
    4.1 Introduction
    4.2 Static CMOS Design
    4.2.1 Complementary CMOS
    4.2.2 Ratioed Logic
    4.2.3 Pass-Transistor Logic
    4.3 Dynamic CMOS Design
    4.3.1 Dynamic Logic: Basic Principles
    4.3.2 Perfonnance of Dynamic Logic
    4.3.3 Noise Considerations in Dynamic Design
    4.3.4 Cascading Dynamic Gates
    4.4 Power Consumption in CMOS Gates
    4.4.1 Switching Activity of a Logic Gate
    4.4.2 Glitching in Static CMOS Circuits
    4.4.3 Short-Circuit Currents in Static CMOS Circuits
    4.4.4 Analyzing Power Consumption Using SPICE
    4.4.5 Low-Power CMOS Design
    4.5 Perspective: How to Choose a Logic Style
    4.6 Summary
    4.7 To Probe Further
    4.8 Exercises and Design Problems
    Appendix C: Layout Techniques for Complex Cates
    Chapter 5: Very High Perfonnance Digital Circuits
    5.1 Introduction
    5.2 Bipolar Gate Design
    5.2.1 Logic Design in ECL
    5.2.2 Differential ECL
    5.2.3 Current Mode Logic
    5:2.4 ECL with Active Pull-Downs
    5.2.5 Altemative Bipolar Logic Styles
    5.3 The BiCMOS Approach
    5.3.1 The BiCMOS Gate at a Glance
    5.3.2 The Static Behavior and Robustness Issues
    5.3.3 Perfonnance of the BiCMOS Inverter
    5.3.4 Power Consumption
    5.3.5 Technology Scaling
    5.3.6 Designing BiCMOS Digital Gates
    5.4 Digital Gallium Arsenide Design *
    5.4.1 GaAs Devices and Their Properties
    5.4.2 GaAs Digital Circuit Design
    5.5 Low-Temperature Digital Circuits *
    5.5.1 Low-Temperature Silicon Digital Circuits
    5.5.2 Superconducting Logic Circuits
    5.6 Perspective: When to Use High-Performance Technologies
    5.7 Summary
    5.8 To Probe Further
    5.9 Exercises and Design Problems
    Appendlx D: The Schottky-Bamer Oiode
    Chapter 6: Designing Sequential Logic Circuits
    6.1 Introduction
    6.2 Static Sequential Circuits
    6.2.1 Bistability
    6.2.2 Flip-Flop Classification
    6.2.3 Master-Slave and Edge-Triggered FFs
    6.2.4 CMOS Static Flip-Flops
    6.2.5 Bipolar Static Flip-Flops
    6.3 Dynamic Sequentia) Circuits
    6.3.1 The Pseudostatic Latch
    6.3.2 The Dynamic Two-Phase Flip-Flop
    6.3.3 The C2MOS Latch
    6.3.4 NORA-CMOS-A Logic Style for Pipelined Structures
    6.3.5 True Single-Phase Clocked Logic (TSPCL)
    6.4 Non-Bistable Sequential Circuits
    6.4.1 The Schmitt Trigger
    6.4.2 Monostable Sequential Circuits
    6.4.3 Astable Circuits
    6.5 Perspective: Choosing a Clocking Strategy
    6.6 Summary
    6.7 To Probe Funher
    6.8 Exercises and Design Problems
    PART 11: A SYSTEMS PERSPECTIVE
    Chapter 7: Designing Arithmetic Building Blocks
    7.1 Introduction
    7.2 Datapaths in Digital Processor Architectures
    7.3 The Adder
    7.3.1 The Binary Adder: Definitions
    7.3.2 The Full Adder: Circuit Design Considerations
    7.3.3 The Binary Adder: Logic Design Considerations
    7.4 The Multiplier
    7.4.1 The Multiplier: Definitions
    7.4.2 The Array Multiplier
    7.4.3 Other Multiplier Structures
    7.5 The Shifter
    7.5.1 BarrelShifter
    7.5.2 Logarithmic Shifter
    7.6 Other Arithmetic Operators
    7.7 Power Considerations in Datapath Structures
    7.7.1 Reducing the Supply Voltage
    7.7.2 Reducing the Effective Capacitance
    7.8 Perspective: De.sign as aTrade-off
    7.9 Summary
    7.10 To Probe Further
    7.11 Exercises and Design Problems
    Appendix E: From Datapath Schematics to Layout
    Chapter 8: Coping wlth Interconnect
    8.1 Introduction
    8.2 Capacitive Parasitics
    8.2.1 Modeling Interconnect Capacitance
    8.2.2 Capacitance and Reliability-Cross Talk
    8.2.3 Capacitance and Performance in CMOS
    8.2.4 Capacitance and Performance in Bipolar Design
    8.3 Resistive Parasitics
    8.3.1 Modeling and Scaling of Interconnect Resistance
    8.3.2 Resistance and Reliability-Ohmic Voltage Drop
    8.3.3 Electromigration
    8.3.4 Resistance and Performance-RC Delay
    8.4 Inductive Parasitics
    8.4.1 Sources of Parasitic Inductances
    8.4.2 Inductance and Reliability- Voltage Drop
    8.4.3 Inductance and Performance-Transmission Lin5e Effects
    8.5 Comments on Packaging Technology
    8.5.1 Package Materials
    8.5.2 Interconnect Levels
    8.5.3 Thennal Considerations in Packaging
    8.6 Perspective: When to Consider Interconnect Parasitics
    8.7 Chapter Summary
    8.8 To Probe Further
    8.9 Exercises and Design Problems
    Chapter 9: Timing Issues in Digital Circuits
    9.1 Introduction
    9.2 Clock Skew and Sequential Circuit Performance
    9.2.1 Single-Phase Edge-Triggered Clocking
    9.2.2 Two-Phase Master-Slave Clocking
    9.2.3 Other Clocking Styles
    9.2.4 How to Counter Clock Skew Problems
    9.2.5 Case Study-The Digital Alpha 21164 Microprocessor
    9.3 Self-Timed Circuit Design*
    9.3.1 Selt-Timed Concept
    9.3.2 Completion-Signal Generation
    9.3.3 Self-Timed Signaling
    9.4 Synchronizers and Arbiters*
    9.4.1 Synchronizers-Concept and Implementation
    9.4.2 Arbiters
    9.5 Clock Generation and Synchronization*
    9.5.1 Clock Generators
    9.5.2 Synchronization at the System Level
    9.6 Perspective: Synchronous versus Asynchronous Design
    9.7 Summary
    9.8 To Probe Further
    9.9 Exerci.ses and Design Problems
    Chapter 10: Designing Memory and Array Structures
    10.1 Introduction
    10.2 Semiconductor Memories--An Introduction
    10.2.1 Memory Classification
    10.2.2 Memory Architectures and Building Blocks
    10.3 The Memory Core
    10.3.1 Read-Only Memories
    10.3.2 Nonvolati le Read-Write Memories
    10.3.3 Read-Write Memories (RAM)
    10.4 Memory Peripheral Circuitry
    10.4.1 The Address Decoders
    10.4.2 Sense Amplifiers
    10.4.3 Drivers/Buffers
    10.4.4 Timing and Control
    10.5 Memory Reliability and Yield
    10.5.1 Signal-To-Noise Ratio
    10.5.2 Memory yield
    10.6 Case Studies in Memory Design
    10.6.1 The Programmable Logic Array (PLA)
    10.6.2 A 4 Mbit SRAM
    10.7 Perspective: Semiconductor Memory Trends and Evolutions
    10.8 Summary
    10.9 To Probe Further
    10.10 Exercises and Design Problems
    Chapterll: Deslgn Methodologles
    11.1 Introduction
    11.2 Design Analysis and Simulation
    11.2.1 Representing Digital Data as a Continuous Entity
    11.2.2 Representing Data as a Discrete Entity
    11.2.3 Using Higher-Level Data Models
    11.3 Design Verification
    11.3.1 Electrical Verification
    11.3.2 Timing Verification
    11.3.3 Functional (or Fonnal) Verification
    11.4 Implementation Approaches
    11.4.1 Custom Circuit Design
    11.4.2 Cell-Based Design Methodology
    11.4.3 Anay-Based Implementation Approaches
    11.5 Design Synthesis
    11.5.1 Circuit Synthesis
    11.5.2 Logic Synthesis
    11.5.3 Architecture Synthesis
    11.6 Validation and Testing of Manufactured Circuits
    11.6.1 TestProcedure
    11.6.2 Design for Testability
    11.6.3 Test-Pattem Generation
    11.7 Perspective and Summary
    11.8 To Probe Further
    11.9 Exercises and Design Problems
    Problem Solutions

    与描述相符

    100

    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外