您好,欢迎光临有路网!
代数几何中的拓扑方法(英文版)
QQ咨询:
有路璐璐:

代数几何中的拓扑方法(英文版)

  • 作者:Friedrich Hirzebruch
  • 出版社:世界图书出版社
  • ISBN:9787506271875
  • 出版日期:2004年11月01日
  • 页数:234
  • 定价:¥39.00
  • 分享领佣金
    手机购买
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    内容提要
    H. CARTAN and J.-P. SERRE have shown how fundamental theoremson holomorphically complete manifolds (STEIN manifolds) can be for-mulated in terms of sheaf theory. These theorems imply many facts offunction theory because the domains of holomorphy are holomorphicallycomplete. They can also be applied to algebraic geometry because thecomplement of a hyperplane section of an algebraic manifold is holo-morphically complete. J.-P. SERRE has obtained important results onalgebraic manifolds by these and
    目录
    Introduction
    Chapter One. Preparatory material
    1. Multiplicative sequences
    2. Sheaves
    3. Fibre bundles
    4. Characteristic classes
    Chapter Two. The cobordism ring
    5. PONTRJAGIN numbers
    6. The ring
    7. The cobordism ring
    8. The index of a 4 k-dimensional manifold
    9. The virtual index
    Chapter Three. The TODD genus
    10. Definition of the TODD genus
    11. The virtual generalised TODD genus
    12. The T-characteristic of a G L (q, C)-bundle
    13. Split manifolds and splitting methods
    14. Multiplicative properties of the TODD genus
    Chapter Four. The RIEMANN-ROCH theorem for algebraic manifolds
    15. Cohomology of compact complex manifolds
    16. Further properties of the Xy-characteristic
    17. The virtual Xy-characteristic
    18. Some fundamental theorems of KODAIRA
    19. The virtual Xy-characteristic for algebraic manifolds
    20. The RIEMANN-ROCH theorem for algebraic manifolds and complex analytic line bundles
    21. The RIEMANN-ROCH theorem for algebraic manifolds and complex analytic vector bundles
    Appendix One by R. L. E. SCHWARZENBERGER
    22. Applications of the RIEMANN-ROCH theorem
    23. The RIEMANN-ROCH theorem of GROTHENDIECK
    24. The GROTHENDIECK ring of continuous vector bundles
    25. The ATIYAH-SINGER index theorem
    26. Integrality theorems for differentiable manifolds
    Appendix Two by A. BOREL
    A spectral sequence for complex analytic bundles
    Bibliography
    Index

    与描述相符

    100

    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外