出版日期:2004年03月
ISBN:9787302079682
[十位:7302079684]
页数:761
定价:¥68.00
店铺售价:¥57.50
(为您节省:¥10.50)
店铺库存:7
本
正在处理购买信息,请稍候……
我要买:
本
* 如何购买
联系店主:
15974791540
-
100分
满分
确认收货后30天未评价,系统默认好评!
[2025-01-20 23:49:09]
王**
南通市
-
100分
满分
确认收货后30天未评价,系统默认好评!
[2025-01-19 22:02:20]
何**
广州市
-
100分
满分
确认收货后30天未评价,系统默认好评!
[2025-01-18 22:18:46]
肖**
永州市
-
100分
满分
确认收货后30天未评价,系统默认好评!
[2025-01-18 21:00:49]
占**
杭州市
-
100分
满分
确认收货后30天未评价,系统默认好评!
[2025-01-18 12:01:30]
张*
茂名市
《数字集成电路:设计透视(第2版影印版)》内容提要:
本书的特点主要包括: (1)将数字集成电路设计中电路与系统的视角统一起来,在系统深入地介绍了深亚微米条件下半导体器件的知识和*基本的反相器后,作者逐渐将这些基础知识引入到更加复杂的模块,比如门、寄存器、控制器、加法器、乘法器和存储器等。在深亚微米的设计条件下,设计者不仅仅需要考虑整个系统的设计问题,还要随时警惕在电路级——比如器件和连线所带来的问题。 (2)本书是**本将数字集成电路设计问题集中在深亚微米条件下的参考书,并且提供了一个深亚微米条件下的简晶体管模型。另外针对深亚微米条件下设计人员所面对的新挑战,例如互连线问题、信号完整性问题、时钟分布问题、功耗问题等,全书都做了非常详细的论述。(3)书中的内容紧扣当今数字集成电路设计的核心问题,并通过大量的设计实例向读者介绍了*新的设计技术和工程发展现状与趋势。
《数字集成电路:设计透视(第2版影印版)》图书目录:
Chapterl: Introduction
1.1 A Historical Perspective
1.2 Issues in Digital Integrated Circuit Design
1.3 To Probe Further
1.4 Exercises
PART 1: A CIRCUIT PERSPECTIVE
Chapter 2: The Devices
2.1 Introduction
2.2 The Diode
2.2.1 A First Glance at the Device
2.2.2 Static Behavior
2.2.3 Dynamic, or Transient, Behavior
2.2.4 The Actual Diode-Secondary Effects
2.2.5 The SPICE Diode Model
2.3 The MOS(FET) Transistor
2.3.1 A First Glance at the Device
2.3.2 Static Behavior
2.3.3 Dynamic Behavior
2.3.4 The Actual MOS Transistor-Secondary Effects
2.3.5 SPICE Models for the MOS Transistor
2.4 The Bipolar Transistor
2.4.1 A First Glance at the Device
2.4.2 Stalic Behavior
2.4.3 Dynamic Behavior
2.4.4 The Actual Bipolar Transistor-Secondary Effects
2.4.5 SPICE Models for the Bipolar Transistor
2.5 A Word on Process Variations
2.6 Perspective: Future Device Developments
2.7 Summary
2.8 To Probe Further
2.9 Exercises and Design Problems
Appendlx A: Layout Design Rules
Appendlx B: Small-Slgnal Models
Chapter 3: The Inverter
3.1 Introduction
3.2 Delinitions and Properties
3.2.1 Area and Complexity
3.2.2 Functionality and Robustness: The Static Behavior
3.2.3 Performance: The Dynamic Behavior
3.2.4 Power and Energy Consumption
3.3 The Static CMOS Invener
3.3.1 A First Glance
3.3.2 Evaluating the Robustness of the CMOS Inverter: The Static Behavior
3.3.3 Perfonnance of CMOS Inverter: The Dynamic Behavior
3.3.4 Power Consumption and Power-Delay Product
3.3.5 A Look into the Future: Effects of Technology Scaling
3.4 The Bipolar ECL Inverter
3.4.1 Issues in Bipolar Digital Design: A Case Study
3.4.2 The Emitter-Coupled Logic (ECL) Gate at a Glance
3.4.3 Robustness and Noise Immunity: The Steady-State Characteristics
3.4.4 ECL Switching Speed: Thc Transient Behavior
3.4.5 Power Consumption
3.4.6 Looking Ahead: Scaling the Technology
3.5 Perspective: Area, Perfonnance, and Dissipation
3.6 Summary
3.7 To Probe Further
3.8 Exercises and Design Problems
Chapter 4: Designing Combinational Logk Cates in CMOS
4.1 Introduction
4.2 Static CMOS Design
4.2.1 Complementary CMOS
4.2.2 Ratioed Logic
4.2.3 Pass-Transistor Logic
4.3 Dynamic CMOS Design
4.3.1 Dynamic Logic: Basic Principles
4.3.2 Perfonnance of Dynamic Logic
4.3.3 Noise Considerations in Dynamic Design
4.3.4 Cascading Dynamic Gates
4.4 Power Consumption in CMOS Gates
4.4.1 Switching Activity of a Logic Gate
4.4.2 Glitching in Static CMOS Circuits
4.4.3 Short-Circuit Currents in Static CMOS Circuits
4.4.4 Analyzing Power Consumption Using SPICE
4.4.5 Low-Power CMOS Design
4.5 Perspective: How to Choose a Logic Style
4.6 Summary
4.7 To Probe Further
4.8 Exercises and Design Problems
Appendix C: Layout Techniques for Complex Cates
Chapter 5: Very High Perfonnance Digital Circuits
5.1 Introduction
5.2 Bipolar Gate Design
5.2.1 Logic Design in ECL
5.2.2 Differential ECL
5.2.3 Current Mode Logic
5:2.4 ECL with Active Pull-Downs
5.2.5 Altemative Bipolar Logic Styles
5.3 The BiCMOS Approach
5.3.1 The BiCMOS Gate at a Glance
5.3.2 The Static Behavior and Robustness Issues
5.3.3 Perfonnance of the BiCMOS Inverter
5.3.4 Power Consumption
5.3.5 Technology Scaling
5.3.6 Designing BiCMOS Digital Gates
5.4 Digital Gallium Arsenide Design *
5.4.1 GaAs Devices and Their Properties
5.4.2 GaAs Digital Circuit Design
5.5 Low-Temperature Digital Circuits *
5.5.1 Low-Temperature Silicon Digital Circuits
5.5.2 Superconducting Logic Circuits
5.6 Perspective: When to Use High-Performance Technologies
5.7 Summary
5.8 To Probe Further
5.9 Exercises and Design Problems
Appendlx D: The Schottky-Bamer Oiode
Chapter 6: Designing Sequential Logic Circuits
6.1 Introduction
6.2 Static Sequential Circuits
6.2.1 Bistability
6.2.2 Flip-Flop Classification
6.2.3 Master-Slave and Edge-Triggered FFs
6.2.4 CMOS Static Flip-Flops
6.2.5 Bipolar Static Flip-Flops
6.3 Dynamic Sequentia) Circuits
6.3.1 The Pseudostatic Latch
6.3.2 The Dynamic Two-Phase Flip-Flop
6.3.3 The C2MOS Latch
6.3.4 NORA-CMOS-A Logic Style for Pipelined Structures
6.3.5 True Single-Phase Clocked Logic (TSPCL)
6.4 Non-Bistable Sequential Circuits
6.4.1 The Schmitt Trigger
6.4.2 Monostable Sequential Circuits
6.4.3 Astable Circuits
6.5 Perspective: Choosing a Clocking Strategy
6.6 Summary
6.7 To Probe Funher
6.8 Exercises and Design Problems
PART 11: A SYSTEMS PERSPECTIVE
Chapter 7: Designing Arithmetic Building Blocks
7.1 Introduction
7.2 Datapaths in Digital Processor Architectures
7.3 The Adder
7.3.1 The Binary Adder: Definitions
7.3.2 The Full Adder: Circuit Design Considerations
7.3.3 The Binary Adder: Logic Design Considerations
7.4 The Multiplier
7.4.1 The Multiplier: Definitions
7.4.2 The Array Multiplier
7.4.3 Other Multiplier Structures
7.5 The Shifter
7.5.1 BarrelShifter
7.5.2 Logarithmic Shifter
7.6 Other Arithmetic Operators
7.7 Power Considerations in Datapath Structures
7.7.1 Reducing the Supply Voltage
7.7.2 Reducing the Effective Capacitance
7.8 Perspective: De.sign as aTrade-off
7.9 Summary
7.10 To Probe Further
7.11 Exercises and Design Problems
Appendix E: From Datapath Schematics to Layout
Chapter 8: Coping wlth Interconnect
8.1 Introduction
8.2 Capacitive Parasitics
8.2.1 Modeling Interconnect Capacitance
8.2.2 Capacitance and Reliability-Cross Talk
8.2.3 Capacitance and Performance in CMOS
8.2.4 Capacitance and Performance in Bipolar Design
8.3 Resistive Parasitics
8.3.1 Modeling and Scaling of Interconnect Resistance
8.3.2 Resistance and Reliability-Ohmic Voltage Drop
8.3.3 Electromigration
8.3.4 Resistance and Performance-RC Delay
8.4 Inductive Parasitics
8.4.1 Sources of Parasitic Inductances
8.4.2 Inductance and Reliability- Voltage Drop
8.4.3 Inductance and Performance-Transmission Lin5e Effects
8.5 Comments on Packaging Technology
8.5.1 Package Materials
8.5.2 Interconnect Levels
8.5.3 Thennal Considerations in Packaging
8.6 Perspective: When to Consider Interconnect Parasitics
8.7 Chapter Summary
8.8 To Probe Further
8.9 Exercises and Design Problems
Chapter 9: Timing Issues in Digital Circuits
9.1 Introduction
9.2 Clock Skew and Sequential Circuit Performance
9.2.1 Single-Phase Edge-Triggered Clocking
9.2.2 Two-Phase Master-Slave Clocking
9.2.3 Other Clocking Styles
9.2.4 How to Counter Clock Skew Problems
9.2.5 Case Study-The Digital Alpha 21164 Microprocessor
9.3 Self-Timed Circuit Design*
9.3.1 Selt-Timed Concept
9.3.2 Completion-Signal Generation
9.3.3 Self-Timed Signaling
9.4 Synchronizers and Arbiters*
9.4.1 Synchronizers-Concept and Implementation
9.4.2 Arbiters
9.5 Clock Generation and Synchronization*
9.5.1 Clock Generators
9.5.2 Synchronization at the System Level
9.6 Perspective: Synchronous versus Asynchronous Design
9.7 Summary
9.8 To Probe Further
9.9 Exerci.ses and Design Problems
Chapter 10: Designing Memory and Array Structures
10.1 Introduction
10.2 Semiconductor Memories--An Introduction
10.2.1 Memory Classification
10.2.2 Memory Architectures and Building Blocks
10.3 The Memory Core
10.3.1 Read-Only Memories
10.3.2 Nonvolati le Read-Write Memories
10.3.3 Read-Write Memories (RAM)
10.4 Memory Peripheral Circuitry
10.4.1 The Address Decoders
10.4.2 Sense Amplifiers
10.4.3 Drivers/Buffers
10.4.4 Timing and Control
10.5 Memory Reliability and Yield
10.5.1 Signal-To-Noise Ratio
10.5.2 Memory yield
10.6 Case Studies in Memory Design
10.6.1 The Programmable Logic Array (PLA)
10.6.2 A 4 Mbit SRAM
10.7 Perspective: Semiconductor Memory Trends and Evolutions
10.8 Summary
10.9 To Probe Further
10.10 Exercises and Design Problems
Chapterll: Deslgn Methodologles
11.1 Introduction
11.2 Design Analysis and Simulation
11.2.1 Representing Digital Data as a Continuous Entity
11.2.2 Representing Data as a Discrete Entity
11.2.3 Using Higher-Level Data Models
11.3 Design Verification
11.3.1 Electrical Verification
11.3.2 Timing Verification
11.3.3 Functional (or Fonnal) Verification
11.4 Implementation Approaches
11.4.1 Custom Circuit Design
11.4.2 Cell-Based Design Methodology
11.4.3 Anay-Based Implementation Approaches
11.5 Design Synthesis
11.5.1 Circuit Synthesis
11.5.2 Logic Synthesis
11.5.3 Architecture Synthesis
11.6 Validation and Testing of Manufactured Circuits
11.6.1 TestProcedure
11.6.2 Design for Testability
11.6.3 Test-Pattem Generation
11.7 Perspective and Summary
11.8 To Probe Further
11.9 Exercises and Design Problems
Problem Solutions