出版日期:2014年09月
ISBN:9787302371564
[十位:7302371563]
页数:364
定价:¥49.00
店铺售价:¥15.90
(为您节省:¥33.10)
店铺库存:3
本
正在处理购买信息,请稍候……
我要买:
本
* 如何购买
联系店主:
13556043787
店主推荐图书:
-
¥14.00
-
¥13.00
-
¥4.40
-
¥15.50
-
100分
满分
确认收货后30天未评价,系统默认好评!
[2024-01-29 15:08:39]
壮*
昆明市
-
100分
满分
确认收货后30天未评价,系统默认好评!
[2024-01-26 18:15:17]
姚**
西安市
-
100分
满分
确认收货后30天未评价,系统默认好评!
[2023-10-22 14:38:08]
王**
广州市
-
100分
满分
确认收货后30天未评价,系统默认好评!
[2023-06-17 20:08:54]
覃**
铜仁市
-
100分
满分
确认收货后30天未评价,系统默认好评!
[2023-03-13 23:20:23]
杨**
广州市
《非参数统计(第2版)(内容一致,印次、封面或原价不同,统一售价,随机发货)》内容提要:
《应用统计学系列教材:非参数统计(第2版)》是非参数统计教材,内容从经典非参数统计推断到现代前沿,包括基本概念、单一样本的推断问题、两独立样本数据的位置和尺度推断、多组数据位置推断、分类数据的关联分析、秩相关和分位数回归、非参数密度估计、一元非参数回归和数据挖掘与机器学习共计9章。《应用统计学系列教材:非参数统计(第2版)》配有大量与社会、经济、金融、生物等专业相关的例题和习题,还配置了一些实验或案例,方便结合R软件进行探索、研究。
《非参数统计(第2版)(内容一致,印次、封面或原价不同,统一售价,随机发货)》图书目录:
第1章基本概念
1.1非参数统计概念与产生
1.2假设检验回顾
1.3经验分布和分布探索
1.3.1经验分布
1.3.2生存函数
1.4检验的相对效率
1.5分位数和非参数估计
1.6秩检验统计量
1.7 U统计量
1.8实验
习题
第2章单一样本的推断问题
2.1符号检验和分位数推断
2.1.1基本概念
2.1.2大样本计算
2.1.3符号检验在配对样本比较中的应用
2.1.4分位数检验——符号检验的推广
2.2 Cox—Staut趋势存在性检验
2.3随机游程检验
2.4 Wilcoxon符号秩检验
2.4.1基本概念
2.4.2 Wilcoxon符号秩检验和抽样分布
2.5单组数据的位置参数置信区间估计
2.5.1顺序统计量位置参数置信区间估计
2.5.2基于方差估计法的位置参数置信区间估计
2.6正态记分检验
2.7分布的一致性检验
2.7.1 X2拟合优度检验
2.7.2 Kolmogorov—Smirnov正态性检验
2.7.3 Liliefor正态分布检验
2.8单一总体渐近相对效率比较
2.9实验
习题
第3章两独立样本数据的位置和尺度推断
3.1 Brown—Mood中位数检验
3.2 Wilcoxon—Mann—WI'utney秩和检验
3.3 Mood方差检验
3.4 Moses方差检验
3.5实验
习题
第4章多组数据位置推断
4.1试验设计和方差分析的基本概念回顾
4.2 Kruskal—Wallis单因素方差分析
4.3 Jonckheere—Terpstra检验
4.4 Friedman秩方差分析法
4.5随机区组数据的调整秩和检验
4.6Cochran检验
4.7 Durbin不完全区组分析法
4.8案例
习题
第5章分类数据的关联分析
5.1 r×s列联表和X2独立性检验
5.2 X2齐性检验
5.3 Fisher**性检验
5.4 Mantel—Haenszel检验
5.5关联规则
5.5.1关联规则基本概念
5.5.2 Apriori算法
5.6 Ridit检验法
5.7对数线性模型
5.7.1对数线性模型的基本概念
5.7.2模型的设计矩阵
5.7.3模型的估计和检验
5.7.4高维对数线性模型和独立性
5.8案例
习题
第6章秩相关和分位数回归
6.1 Spearman秩相关检验
6.2 Kendall T相关检验
6.3多变量Kendall协和系数检验
6.4 Kappa 一致性检验
6.5中位数回归系数估计法
6.5.1 Brown—Mood方法
6.5.2 Theil方法
6.5.3关于α和β的检验
6.6线性分位回归模型
6.7案例
习题
第7章非参数密度估计
7.1直方图密度估计
7.1.1基本概念
7.1.2理论性质和*优带宽
7.1.3多维直方图
7.2核密度估计
7.2.1核函数的基本概念
7.2.2理论性质和带宽
7.2.3多维核密度估计
7.2.4贝叶斯决策和非参数密度估计
7.3尼近邻估计
7.4案例
习题
第8章一元非参数回归
8.1核回归光滑模型
8.2局部多项式回归
8.2.1局部线性回归
8.2.2局部多项式回归的基本原理
8.3 LOWESS稳健回归
8.4k近邻回归
8.5正交序列回归
8.6罚*小二乘法
8.7样条回归
8.7.1模型
8.7.2样条回归模型的节点
8.7.3常用的样条基函数
8.7.4样条模型的自由度
8.8案例
习题
第9章数据挖掘与机器学习
9.1 一般分类问题
9.2 Logistic回归
9.2.1 Logistic回归模型
9.2.2 Logistic回归模型的极大似然估计
9.2.3 Logistic回归和线性判别函数LDA的比较
9.3k近邻
9.4决策树
9.4.1决策树基本概念
9.4.2 CART
9.4.3决策树的剪枝
9.4.4回归树
9.4.5决策树的特点
9.5 BOOSting
9.5.1 Boosting方法
9.5.2AdaBoost.Ml算法
9.6支持向量机
9.6.1*大边距分类
9.6.2支持向量机问题的求解
9.6.3支持向量机的核方法
9.7随机森林树
9.7.1随机森林树算法的定义
9,7.2随机森林树算法的性质
9.7.3如何确定随机森林树算法中树的节点分裂变量
9.7.4随机森林树的回归算法
9.7.5有关随机森林树算法的一些评价
9.8多元自适应回归样条
9.8.1MARS与CART的联系
9.8.2 MARS的一些性质
9.9案例
习题
……
附录A R基础
附录B常用统计分布表
参考文献