网站购物车   | 店铺购物车  
店铺平均得分:99.81 分,再接再厉!!!【查看全部评价】
评分 40分 50分 60分 70分 80分 90分 100分
数量 3 0 1 0 8 29 3464
本店铺共有 0 笔投诉记录,投诉率 0% ,低于平均投诉率 1% 【查看详细】
投诉类型
数量
比例
店主称呼:拾光   联系方式:购买咨询请联系我  15974791540    地址:湖南省 长沙市 望城区 书堂山
促销广告:正版二手 八五成新左右 ,多仓发货,多本可优惠,可开发票,急单慎重,最好先咨询。
图书分类
店铺公告
提交订单后,在“入驻店铺订单”内查看。
多本可优惠,具体联系客服。

正版二手书籍,八五成新左右,发货以后品相问题不退货退款,买家原因造成的退货退款拒收,都需要买家承担相应的运费。
确认后的订单在入驻店铺订单里找;确认后请及时付款,长时间未付款书籍也会被别人买走。店铺二手书默认不含CD,有CD的我们会附赠的,购买套装的请联系客服,低价是一本书的价格。
多本书籍多仓寄出,请耐心等待,有问题最好电话或者短信联系。

电话或微信:15974791540
店铺介绍
找书具体联系客服。
多本多仓发货,不指定快递,具体看公告
咨询,找书,售后都打电话加微信,QQ上不了
订单在入驻店铺订单查看
交易帮助
第一步:选择图书放入购物车。
第二步:结算、填写收货地址。
第三步:担保付款或银行汇款。
第四步:卖家发货。
第五步:确认收货、评价。
作/译者:龚声蓉 出版社:清华大学出版社
数字图像处理与分析(第2版)(21世纪高等学校计算机系列规划教材)
出版日期:2014年05月
ISBN:9787302349440 [十位:7302349444]
页数:354      
定价:¥39.50
店铺售价:¥10.30 (为您节省:¥29.20
店铺库存:1
注:您当前是在入驻店铺购买,非有路网直接销售。
正在处理购买信息,请稍候……
我要买: * 如何购买
** 关于库存、售价、配送费等具体信息建议直接联系店主咨询。
联系店主:购买咨询请联系我  15974791540
本店已缴纳保证金,请放心购买!【如何赔付?】
��家对店铺的满意度评价:查看更多>>
评分
评价内容
评论人
订单图书
《数字图像处理与分析(第2版)(21世纪高等学校计算机系列规划教材)》内容提要:
《数字图像处理与分析(第2版)/21世纪高等学校计算机系列规划教材》从基本概念入手,采用理论与实践相结合的方式,全面地介绍了图像处理与分析的基本问题、主要研究成果以及具体实例开发过程。内容系统、完整,讲解深入浅出,并配有习题指导和实验,全书配有电子教案和书中实例的完整程序。
《数字图像处理与分析(第2版)/21世纪高等学校计算机系列规划教材》可作为高校计算机科学、电子工程、自动化、生物医学、遥感、地质、矿业、通信、气象、农业等相关专业高年级本科生教材,也可供相关领域的大学教师、科研人员和工程技术人员参考。
《数字图像处理与分析(第2版)(21世纪高等学校计算机系列规划教材)》图书目录:
第1章 绪论
1.1 数字图像处理的发展
1.2 数字图像处理的相关概念
1.2.1 数字图像及其组成要素
1.2.2 图像处理
1.2.3 图像分析
1.2.4 图像理解
1.2.5 与相关学科的关系
1.3 数字图像处理方法
1.3.1 空域处理方法
1.3.2 变换域处理方法
1.4 数字图像处理的主要研究内容
1.5 数字图像处理的应用实例
1.5.1 生物医学中的应用
1.5.2 遥感领域中的应用
1.5.3 工业方面的应用
1.5.4 军事公安领域的应用
1.5.5 通信中的应用
1.5.6 交通中的应用
1.5.7 其他应用
1.6 小结
习题
第2章 数字图像表示及其处理
2.1 人眼成像及视觉信息的产生
2.2 简单的图像形成模型
2.2.1 亮度成像模型
2.2.2 颜色成像模型
2.2.3 颜色空间
2.3 图像的数字化
2.3.1 采样
2.3.2 量化
2.4 数字图像的基本类型
2.4.1 二值图像
2.4.2 灰度图像
2.4.3 RGB图像
2.4.4 索引图像
2.5 数字图像的基本文件格式
2.5.1 BMP文件格式
2.5.2 TIFF文件格式
2.5.3 GIF文件格式
2.5.4 PCX文件格式
2.5.5 JPEG文件格式
2.5.6 用VC++实现BMP图像文件的显示
2.6 小结
习题
第3章 图像增强
3.1 概述
3.2 空域增强
3.2.1 灰度变换增强
3.2.2 直方图变换增强
3.2.3 空间平滑滤波增强
3.3 频域增强
3.3.1 傅里叶变换
3.3.2 频域滤波增强
3.4 图像的锐化
3.4.1 基于一阶微分的图像增强——梯度算子
3.4.2 基于二阶微分的图像增强——拉普拉斯算子
3.5 彩色图像增强
3.5.1 伪彩色增强
3.5.2 假彩色增强
3.5.3 真彩色增强
3.6 小结
习题
第4章 图像编码与压缩
4.1 图像编码的必要性与可能性
4.1.1 图像编码的必要性
4.1.2 图像编码的可能性
4.2 图像编码分类
4.3 图像编码评价准则
4.3.1 客观保真度准则
4.3.2 主观保真度准则
4.4 图像编码模型
4.4.1 信源编码器和信源解码器
4.4.2 信道编码器和信道解码器
4.5 无损压缩
4.5.1 霍夫曼编码
4.5.2 费诺-香农编码
4.5.3 算术编码
4.5.4 游程编码
4.5.5 无损预测编码
4.6 有损压缩
4.6.1 有损预测编码
4.6.2 变换编码
4.7 JPEG图像编码压缩标准
4.7.1 JPEG的工作模式
4.7.2 基本工作模式
4.7.3 JPEG文件格式
4.8 MPEG视频编码压缩标准
4.9 小结
习题
第5章 图像复原
5.1 基本概念
5.1.1 图像退化一般模型
5.1.2 成像系统的基本定义
5.1.3 连续函数的退化模型
5.1.4 离散函数的退化模型
5.2 图像噪声与只存在噪声的空域滤波复原
5.2.1 常见的噪声及其概率密度函数
5.2.2 只存在噪声的空域滤波复原
5.3 无约束复原
5.3.1 无约束复原的代数方法
5.3.2 退化函数H(u,v)的估计
5.3.3 逆滤波
5.3.4 去除由匀速运动引起的模糊
5.4 有约束复原
5.4.1 约束*小二乘方复原
5.4.2 维纳滤波
5.4.3 有约束*小平方滤波
5.5 非线性复原方法
5.5.1 *大后验复原
5.5.2 *大熵复原
5.5.3 投影复原方法
5.6 几种其他图像复原技术
5.6.1 几何畸变校正
5.6.2 盲目图像复原
5.7 小结
习题
第6章 图像重建
6.1 概述
6.2 图像重建原理
6.3 傅里叶反投影重建
6.3.1 重建公式的推导
6.3.2 重建公式的实用化
6.4 卷积法重建
6.5 代数重建
6.6 重建图像的显示
6.6.1 三维图像重建的体绘制
6.6.2 三维图像重建的面绘制
6.7 小结
习题
第7章 图像分割技术
7.1 图像分割概述
7.2 基于边缘的分割
7.2.1 边缘检测概述
7.2.2 边缘检测方法
7.2.3 边界跟踪
7.3 基于阈值的分割
7.3.1 阈值分割原理及分类
7.3.2 全局阈值
7.3.3 局部阈值
7.3.4 阈值选取方法
7.4 基于熵的分割方法
7.4.1 一维*大熵分割方法
7.4.2 二维*大熵分割方法
7.5 基于区域的分割
7.5.1 区域生长法
7.5.2 区域分裂与合并法
7.6 基于形态学分水岭的分割
7.6.1 形态学图像处理基本概念和运算
7.6.2 基于分水岭的分割
7.7 基于聚类的分割
7.7.1 C?均值聚类方法
7.7.2 模糊C?均值聚类方法
7.8 彩色图像分割
7.8.1 直方图阈值法
7.8.2 彩色空间聚类法
7.8.3 区域生长法
7.9 小结
习题
第8章 图像特征提取与分析
8.1 概述
8.1.1 图像内容
8.1.2 图像特征
8.1.3 特征选择
8.2 颜色特征描述
8.2.1 符合视觉感知的颜色空间
8.2.2 颜色直方图
8.2.3 颜色矩
8.2.4 颜色集
8.2.5 颜色相关矢量
8.3 形状特征描述
8.3.1 几个基本概念
8.3.2 区域内部空间域分析
8.3.3 区域内部变换分析
8.3.4 区域边界的形状特征描述
8.4 图像的纹理分析技术
8.4.1 纹理分析概念
8.4.2 空间灰度共生矩阵
8.4.3 纹理能量测量
8.4.4 纹理的结构分析方法和纹理梯度
8.5 局部特征描述
8.5.1 概述
8.5.2 角点检测
8.5.3 区域描述子
8.6 小结
习题
第9章 图像匹配与识别
9.1 图像识别的基本概念
9.2 图像识别方法分类
9.3 基于匹配的图像识别
9.3.1 全局模板匹配
9.3.2 模板矢量匹配
9.4 统计识别方法
9.5 人工神经网络识别方法
9.5.1 BP神经网络图像识别
9.5.2 自组织神经网络识别方法
9.6 支持矢量机识别方法
9.6.1 SVM算法的基本思想
9.6.2 SVM算法的分类过程
9.6.3 人脸识别应用
9.7 模糊识别方法
9.8 句法识别方法
9.9 小结
习题
第10章 基于MATLAB图像处理应用实例
10.1 MATLAB简介
10.1.1 MATLAB基础
10.1.2 MATLAB的运行
10.1.3 MATLAB图像处理功能
10.2 案例一: 数字水印嵌入与提取
10.2.1 数字水印的相关概念
10.2.2 数字水印的分类
10.2.3 数字水印系统的组成
10.2.4 水印系统设计
10.3 案例二: 图像配准
10.3.1 图像配准概述
10.3.2 基于RANSAC算法的Harris角点配准
10.4 案例三: 图像融合
10.4.1 图像融合概述
10.4.2 图像融合分类
10.4.3 像素域图像融合实现
10.5 案例四: 图像修复
10.5.1 图像修复概述
10.5.2 图像修复的数学模型
10.5.3 基于样本的图像修复算法
10.6 小结
习题
第11章 基于C++的图像系统设计
11.1 概述
11.1.1 工业光源的选择
11.1.2 工业相机的选择
11.1.3 工业镜头的选择
11.1.4 图像系统实验平台案例
11.2 基于OpenCV的棋盘格摄像机标定
11.2.1 OpenCV简介
11.2.2 棋盘格摄像机标定
11.2.3 摄像机标定的步骤
11.3 车牌识别系统设计
11.3.1 彩色图像转换为灰度图像
11.3.2 图像灰度拉伸
11.3.3 图像的二值化
11.3.4 图像的梯度锐化
11.3.5 图像的中值滤波
11.3.6 车牌牌照区域的定位
11.3.7 确定牌照区域的4个坐标值
11.3.8 车牌区域截取
11.3.9 牌照几何位置的调整
11.3.10 牌照区域的二值化
11.3.11 牌照字符的切分
11.3.12 牌照字符的识别
11.4 小结
习题
参考文献