网站购物车   | 店铺购物车  
店铺平均得分:99.59 分,再接再厉!!!【查看全部评价】
评分 40分 50分 60分 70分 80分 90分 100分
数量 3 2 1 4 8 45 2494
本店铺共有 3 笔投诉记录,投诉率 0% ,低于平均投诉率 1% 【查看详细】
投诉类型
数量
比例
商品问题
1
33%
发货问题
2
67%
已解决
3
100%
店主称呼:超越梦想书店   联系方式:购买咨询请联系我  18179217950    地址:江西省 九江市 共青城市 共青城市大学城(微信号18179217950)(全国多仓库发货)
促销广告:本店正常都是实际库存,请直接下单。每天16点左右发货。
图书分类
店铺公告
本店主仓是江西九江共青城发货,购买多种书时会也可能分到其他仓多物流发货,主仓发极兔,韵达快递,不指定快递。由于旧书库存软件更新可能不及时导致库存不准确出现缺货情况时,我们会在线通知你退款处理(超48小时未发货,请申请退款),为保证您的利益,下单后请及时关注平台上的“在线交谈”信息或务必加QQ:895814297或电话微信18179217950联系确定发货事宜。非常感谢!
店铺介绍
本书店位于江西省国家赣江新区共青城市高校园区,有数百万册各类新旧教材、教辅,欢迎学生、老师及同行团购!同时大量经营注会、司考、证券、银行从业、公务员、教师资格、会计从业、考研、自考等各类考试用书。本店所有书籍质量上乘、价格实惠,大家可以放心购买。在这里您可以购买到您想要的一切关于学习的资料,若在此没有找到您所需资料,请给店主留言或电联:18179217950(微信),QQ:895814297,定会给您满意的答复。
交易帮助
第一步:选择图书放入购物车。
第二步:结算、填写收货地址。
第三步:担保付款或银行汇款。
第四步:卖家发货。
第五步:确认收货、评价。
书名:实分析
作/译者:斯坦恩 出版社:世界图书出版公司
实分析
出版日期:2013年01月
ISBN:9787510040535 [十位:7510040531]
页数:402      
定价:¥59.00
店铺售价:¥22.70 (为您节省:¥36.30
店铺库存:4
注:您当前是在入驻店铺购买,非有路网直接销售。
正在处理购买信息,请稍候……
我要买: * 如何购买
** 关于库存、售价、配送费等具体信息建议直接联系店主咨询。
联系店主:购买咨询请联系我  18179217950
本店已缴纳保证金,请放心购买!【如何赔付?】
店主推荐图书:
买家对店铺的满意度评价:查看更多>>
评分
评价内容
评论人
订单图书
《实分析》内容提要:
Elias M.Stein、Rami Shakarchi所著的《实分析》由在国际上享有盛誉普林斯大林顿大学教授Stein等撰写而成,是一部为数学及相关专业大学二年级和三年级学生编写的教材,理论与实践并重。为了便于非数学专业的学生学习,全书内容简明、易懂,读者只需掌握微积分和线性代数知识。与本书相配套的教材《傅立叶分析导论》和《复分析》也已影印出版。
《实分析》图书目录:
Foreword Introduction 1 Fourier series: completion 2 Limits of continuous functio 3 Length of curves 4 Differentiation and integration 5 The problem of measure Chapter 1. Measure Theory 1 Prelhninaries 2 The exterior measure 3 Measurable sets and the Lebesgue measure 4 Measurable functio 4.1 Definition and basic properties 4.2 Approximation by simple functio or step functio 4.3 Littlewood's three principles 5 The Brunn-Minkowski inequality 6 Exercises 7 Problems Chapter 2. Integration Theory 1 The Lebesgue integral: basic properties and convergence theorems 2 The space L1 ofintegrable functio 3 Fubini's theorem 3.1 Statement and proof of the theorem 3.2 Applicatio of Fubini's theorem 4* A Fourier inveion formula 5 Exercises 6 Problems Chapter 3. Differentiation and Integration 1 Differentiation of the integral 1.1 The Hardy-Littlewood maximal function 1.2 The Lebesgue differentiation theorem 2 Good kernels and approximatio to the identity 3 Differentiability of functio 3.1 Functio of bounded variation 3.2 Absolutely continuous functio 3.3 Differentiability ofjump functio 4 Rectifiable curves and the isoperimetric inequality 4.1 Minkowski content of a curve 4.2 Isoperimetric inequality 5 Exercises 6 Problems Chapter 4. Hilbert Spaces: An Introduction 1 The Hilbert space L2 2 Hilbert spaces 2.1 Orthogonality 2.2 Unitary mappings 2.3 Pre-Hilbert spaces 3 Fourier series and Fatou's theorem 3.1 Fatou's theorem 4 Closed subspaces and orthogonal projectio 5 Linear traformatio 5.1 Linear functionals and the Riesz representation theorem 5.2 Adjoints 5.3 Examples 6 Compact operato 7 Exercises 8 Problems Chapter 5. Hilbert Spaces: Several Examples 1 The Fourier traform on L2 2 The Hardy space of the upper half-plane 3 Cotant coefficient partial differential equatio 3.1 Weaak solutio 3.2 The main theorem and key estimate 4 The Dirichlet principle 4.1 Harmonic functio 4.2 The boundary value problem and Dirichlet's principle 5 Exercises 6 Problems Chapter 6. Abstract Measure and Integration Theory 1 Abstract measure spaces 1.1 Exterior measures and Carathodory's theorem 1.2 Metric exterior measures 1.3 The exteion theorem 2 Integration o a measure space 3 Examples 3.1 Product measures and a general Fubini theorem 3.2 Integration formula for polar coordinates 3.3 Borel measures on and the Lebesgue-Stieltjes integral 4 Absolute continuity of measures 4.1 Signed measures 4.2 Absolute continuity 5* Ergodic theorems 5.1 Mean ergodic theorem 5.2 Maximal ergodic theorem 5.3 Pointwise ergodic theorem 5.4 Ergodic measure-preserving traformatio 6* Appendix: the spectral theorem 6.1 Statement of the theorem 6.2 Positive operato 6.3 Proof of the theorem 6.4 Spectrum 7 Exercises 8 Problems Chapter 7. Hausdorff Measure and Fractals 1 Hausdorff measure 2 Hausdorff dimeion 2.1 Examples 2.2 Self-similarity 3 Space-filling curves 3.1 Quartic intervals and dyadic squares 3.2 Dyadic correspondence 3.3 Cotruction of the Peano mapping 4* Besicovitch sets and regularity 4.1 The Radon traform 4.2 Regularity of sets when d ≥ 3 4.3 Besicovitch sets have dimeion 2 4.4 Cotruction of a Besicovitch set 5 Exercises 6 Problems Notes and References Bibliography Symbol Glossary Index
《实分析》编辑推荐与评论:
Elias M.Stein、Rami Shakarchi所著的《实分析》由在国际上享有盛誉普林斯大林顿大学教授Stein等撰写而成,是一部为数学及相关专业大学二年级和三年级学生编写的教材,理论与实践并重。为了便于非数学专业的学生学习,全书内容简明、易懂,读者只需掌握微积分和线性代数知识。与本书相配套的教材《傅立叶分析导论》和《复分析》也已影印出版。