网站购物车   | 店铺购物车  
店铺平均得分:99.01 分,再接再厉!!!【查看全部评价】
评分 40分 50分 60分 70分 80分 90分 100分
数量 6 5 8 13 38 140 3320
本店铺共有 18 笔投诉记录,投诉率 1% ,低于平均投诉率 1% 【查看详细】
投诉类型
数量
比例
无法联系卖家
1
6%
商品问题
1
6%
支付问题
1
6%
发货问题
13
72%
退款问题
2
11%
已解决
18
100%
店主称呼:岛上二手书店   联系方式:购买咨询请联系我  18814101068    地址:广东省 广州市 番禺区 广州大学城
促销广告:满36包邮 ( 西北五部除外)
图书分类
店铺介绍
本店主营 大学教材以及辅导,全国各地满20包邮,西北五省除外。
交易帮助
第一步:选择图书放入购物车。
第二步:结算、填写收货地址。
第三步:担保付款或银行汇款。
第四步:卖家发货。
第五步:确认收货、评价。
作/译者:杨淑莹 出版社:电子工业出版社
模式识别与智能计算:Matlab 技术实现
出版日期:2008年01月
ISBN:9787121054532 [十位:7121054531]
页数:350      
定价:¥48.00
店铺售价:¥19.70 (为您节省:¥28.30
店铺库存:1
注:您当前是在入驻店铺购买,非有路网直接销售。
正在处理购买信息,请稍候……
我要买: * 如何购买
** 关于库存、售价、配送费等具体信息建议直接联系店主咨询。
联系店主:购买咨询请联系我  18814101068
本店已缴纳保证金,请放心购买!【如何赔付?】
店主推荐图书:
买家对店铺的满意度评价:查看更多>>
评分
评价内容
评论人
订单图书
《模式识别与智能计算:Matlab 技术实现》内容提要:
本书广泛吸取统计学、神经网络、数据挖掘、机器学习、人工智能、群智能计算等学科的先进思想和理论,将其应用到模式识别领域中;以一种新的体系,系统、全面地介绍模式识别的理论、方法及应用。全书共分为13章,内容包括:模式识别概述,特征的选择与提取,模式相似性测度,贝叶斯分类器设计,判别函数分类器设计,神经网络分类器设计(BP神经网络、径向基函数冲经网络、自组织竞争神经网络、慨率神经网络、对向传播神经网络、反馈型神经网络),决策树分类器,粗糙集分类器,聚类分析,模糊聚类分析,遗传算法聚类分析,蚁群算法聚类分析,粒子群算法聚类分析。
本书内容新颖,实用性强,理论与实际应用密切结合,以手写数字识别为应用实例,介绍理论运用于实践的实现步骤及相应的Matlab代码,为广大研究工作者和工程技术人员对相关理论的应用提供借鉴。
本书可作为高等院校计算机工程、信息工程、生物医学工程、智能机器人学、工业自动化、模式识别等学科本科生、研究生的教材或教学参考书,亦可供相关工程技术人员参考。
《模式识别与智能计算:Matlab 技术实现》图书目录:
第1章 模式识别概述
1.1 模式识别的基本慨念
1.2 特征空间优化设计问题
1.3 分类器设计
1.3.1 分类器设计基本方法
1.3.2 判别函数
1.3.3 分类器的选择
1.3.4 训练与学习
1.4 聚类设计
1.5 模式识别的应用
本章小结
习题1
第2章 特征的选择与提取
2.1 样本特征库初步分析
2.2 样品筛选处理
2.3 特征筛选处理
2.3.1 特征相关分析
2.3.2 特征选择及搜索算法
2.4 特征评估
2.5 基于主成分分析的特征提取
2.6 特征空间描述与分析
2.6.1 特征空间描述
2.6.2 特征空间分布分析
2.7 手写数字特征提取与分析
2.7.1 手写数字特征提取
2.7.2 手写数字特征空间分布分析
本章小结
习题2
第3章 模式相似性测度
3.1 模式相似性测度的基本概念
3.2 距离测度分类法
3.2.1 模板匹配法
3.2.2 基于PCA的模板匹配法
3.2.3 基于类**的欧式距离法分类
3.2.4 马氏距离分类
3.2.5 夹角余弦距离分类
3.2.6 二值化的夹角余弦距离法分类
3.2.7 二值化的Tanimoto测度分类
本章小结
习题3
第4章 基于概率统计的贝叶斯分类器设计
4.1 贝叶斯决策的基本概念
4.1.1 贝叶斯决策所讨论的问题
4.1.2 贝叶斯公式
4.2 基于*小错误率的贝叶斯决策
4.3 基于*小风险的贝叶斯决策
4.4 贝叶斯决策比较
4.5 基于二值数据的贝叶斯分类实现
4.6 基于*小错误率的贝叶斯分类实现
4.7 基于*小风险的贝叶斯分类实瑚
本章小结
习题4
第5章 判别函数分类器设计
5.1 判别函数的基本概念
5.2 线性判别函数
5.3 线性判别函数的实现
5.4 感知器算法
5.5 增量校正算法
5.6 LMSE验证可分性
5.7 LMSE分类算法
5.8 Fishe-r分类
5.9 基于核的Fisher分类
5.10 线性分类器实现分类的局限
5.11 非线性判别函数
5.12 分段线性判别函数
5.13 势函数法
5.14 支持向量机
本章小结
习题5
第6章 神经网络分类器设计
6.1 人工神经网络的基本原理
6.1.1 人工神经元
……
第7章 决策树分类器
第8章 粗糙集分类器
第9章 聚类分析
第10章 模糊聚类分析
第11章 遗传算法聚类分析
第12章 蚁群算法聚类分析
第13章 粒子群算法聚类分析
参考文献