网站购物车   | 店铺购物车  
店铺平均得分:98.71 分,再接再厉!!!【查看全部评价】
评分 40分 50分 60分 70分 80分 90分 100分
数量 1 0 0 0 1 4 87
本店铺共有 0 笔投诉记录,投诉率 0% ,低于平均投诉率 1% 【查看详细】
投诉类型
数量
比例
店主称呼:美文书屋   联系方式:购买咨询请联系我  15313279285    地址:北京 北京市 其它区 通州
图书分类
店铺公告
正版旧书,新旧程度:8成新左右,部分笔记,内容完整,无缺页,不影响继续使用,请放心购买。旧书默认不带光盘学习卡等之类附件,详细情况请咨询客服,物美价廉,循环利用,节约资源。
本书回收于校园,循环利用,绿色环保。正版贰手8层新左右,部分笔记、划线,内容完整,无缺页少页,不影响正常阅读和使用(默认不带光盘、学习卡等之类的配件)
量大从优,联系客服修改。
店铺介绍
书店书本10万余本
主营品种:大学教材 小说
经营年限:1年
交易帮助
第一步:选择图书放入购物车。
第二步:结算、填写收货地址。
第三步:担保付款或银行汇款。
第四步:卖家发货。
第五步:确认收货、评价。
作/译者:毛国君 出版社:清华大学出版社
数据挖掘原理与算法(第二版)(内容一致,印次、封面或原价不同,统一售价,随机发货)
出版日期:2007年12月
ISBN:9787302158769 [十位:7302158762]
页数:329      
定价:¥29.00
店铺售价:¥10.10 (为您节省:¥18.90
店铺库存:1
注:您当前是在入驻店铺购买,非有路网直接销售。
正在处理购买信息,请稍候……
我要买: * 如何购买
** 关于库存、售价、配送费等具体信息建议直接联系店主咨询。
联系店主:购买咨询请联系我  15313279285
本店已缴纳保证金,请放心购买!【如何赔付?】
买家对店铺的满意度评价:查看更多>>
评分
评价内容
评论人
订单图书
《数据挖掘原理与算法(第二版)(内容一致,印次、封面或原价不同,统一售价,随机发货)》内容提要:
本书是一本全面介绍数据挖掘和知识发现技术的专业书籍,它系统地阐述了数据挖掘和知识发现技术的产生、发展、应用以及相关概念、原理和算法,对数据挖掘中的主要技术分支,包括关联规则、分类、聚类、序列、空间以及web挖掘等进行了理沦剖析和算法描述。本书的许多内容是作者们在攻读博士学位期间的工作总结,一方面,对于相关概念和技术的阐述尽量先从理论分析人手,在此基础上进行技术归纳;另一方面,为了保证技术的系统性,所有的挖掘模型和算法描述都在统一的技术归纳框架下进行。同时,为了避免抽象算法描述给读者带来的理解困难,本书的所有典型算法都通过具体跟踪执行实例来进一步说明。
本书共分8章,各章相对独立成篇,以利于读者选择性学习。在每章后面都设置专门一节来对本章内容和文献引用情况进行归纳,它不仅可以帮助读者对相关内容进行整理,而且也起到对本内容相关文献的注释性索引功能。第1章是绪论,系统地介绍了数据挖掘产生的商业和技术背景,从不同侧面剖析了数据挖掘的概念和应用价值;第2章给出了知识发现的过程分析和应用体系结构设计;第3章对关联规则挖掘的原理和算法进行全面阐述;第4章给出分类的主要理论和算法描述;第5章讨论聚
《数据挖掘原理与算法(第二版)(内容一致,印次、封面或原价不同,统一售价,随机发货)》图书目录:
第1章 绪论
1.1 数据挖掘技术的产生与发展
1.2 数据挖掘研究的发展趋势
1.3 数据控制的概念
1.4 数据挖掘技术的分类问题
1.5 数据挖掘常用的知识表示模式与方法
1.6 不同数据存储形式下的数据挖掘问题
1.7 粗糙集方法及其在数据挖掘中的应用
1.8 数据挖掘的应用分析
1.9 本章小结和文献注释
习题1
第2章 知识发现过程与应用结构
2.1 知识发现的基本过程
2.2 数据库中的知识发现处理过程模型
2.3 知识发现软件或工具的发展
2.4 知识发现项目的过程化管理
2.5 数据挖掘语言介绍
2.6 本章小结和文献注释
习题2
第3章 关联规则挖掘理论和算法
3.1 基本概念与解决方法
3.2 经典的频繁项目集生成算法分析
3.3 Apriori算法的性能瓶颈问题
3.4 Apriori的改进算法
3.5 对项目集空间理论的发展
3.6 项目集格空间和它的操作
3.7 基于项目集操作的关联规则挖掘算法
3.8 改善关联规则挖掘质量问题
3.9 约束数据挖掘问题
3.10 时态约束关联规则挖掘
3.11 关联规则挖掘中的一些更深入的问题
3.12 数量关联规则挖掘方法
3.13 本章小结和文献注释
习题3
第4章 分类方法
4.1 分类的基本概念与步骤
4.2 基于距离的分类算法
4.3 决策树分类方法
4.4 贝叶斯分类
4.5 规则归纳
4.6 与分类有关的其他问题
4.7 本章小结和文献注释
习题4
第5章 聚类方法
5.1 概述
5.2 划分聚类方法
5.3 层次聚类方法
5.4 密度聚类方法
5.5 其他聚类方法
5.6 本章小结和文献注释
习题5
第6章 时间序列和序列模式挖掘
6.1 时间序列及其应用
6.2 时间序列预测的常用方法
6.3 基于ARMA模型的序列匹配方法
6.4 基于离散傅里叶变换的时间序列相似性查找
6.5 基于规范变换的查找方法
6.6 序列挖掘
6.7 AprioriAll算法
6.8 AprioriSome算法
6.9 GSP算法
9.10 本章小结和文献注释
习题6
第7章 Web挖掘技术
7.1 Web挖掘的分类
7.2 Web挖掘的含义
7.3 Web挖掘的数据来源
7.4 Web内容挖掘方法
7.5 Web内容挖掘方法
7.6 Web访问信息挖掘方法
7.7 Web结构挖掘方法
7.8 本章小结和文献注释
习题7
第8章 空间挖掘
8.1 引言
8.2 空间数据概要
8.3 空间数据挖掘基础
8.4 空间统计学
8.5 泛化与特化
8.6 空间规则
8.7 空间分类算法
8.8 空间聚类算法
8.9 空间挖掘的其他问题
8.10 空间数据挖掘原型系列介绍
8.11 空间数据挖掘的研究现状
8.12 空间数据挖掘的研究与发展方向
8.13 空间数据挖掘与相关学科的关系
8.14 数字地球
8.15 本章小结和文献注释
习题8
参考文献