网站购物车   | 店铺购物车  
店铺平均得分:99.14 分,再接再厉!!!【查看全部评价】
评分 40分 50分 60分 70分 80分 90分 100分
数量 18 6 10 6 23 88 3677
本店铺共有 9 笔投诉记录,投诉率 0% ,低于平均投诉率 1% 【查看详细】
投诉类型
数量
比例
无法联系卖家
1
11%
服务态度问题
1
11%
商品问题
2
22%
发货问题
3
33%
退款问题
2
22%
已解决
9
100%
店主称呼:未付款订单不保留库存   联系方式:购买咨询请联系我  15165232901    地址:山东省 青岛市 市南区 买书加微信17660908355电话不接哦
促销广告:买书加微信17660908355电话不接哦
图书分类
店铺公告
微信:17660908355 常见问题回答如下:1.是否正版?答:正版 2.图书品相?答:原则上标十成新的是库存新书,未标明的是二手书,8成新左右,由于只能上传一种品相加上库存随时处于动态变化中,介意品相的情提前说明,一律以本店最终确认为准!图书是特殊商品,不接受无理由退货等无理要求,看好再买,不同意的不要付款!二手书默认无盘,无答案附件等,有笔记划线不影响阅读,对二手书品相介意的慎拍,我们发货按付款顺序先发品相最佳的。3.可否包邮?答:正版图书微利经营,不议价不包邮。4.邮费多少?答:提交订单,系统会提示邮费,根据书的数量,距离等决定,无法笼统回答。5.可否自提?答:无法自提。6.可以发顺丰?发到付?答:不发顺丰,不发到付。7.运输方式?答:随机不指定,以实际收到为准。无法指定快递。8.付款后多久能发货?答:一般付款第二天即可安排发出【注:非发货时限承诺】9.发货后多久能收到?答:江浙沪京津冀等周边发货后一般3,4天左右到达,偏远地区无法承诺。
店铺介绍
本店库存不断更新,敬请收藏本店。因人手有限,还有大量的书暂未上传,如未找到所需图书,可联系本店订购。微信:17660908355 QQ: 2368168282 我们一直在努力做得更好,希望得到您的大力支持和配合,谢谢您再次光临!
交易帮助
第一步:选择图书放入购物车。
第二步:结算、填写收货地址。
第三步:担保付款或银行汇款。
第四步:卖家发货。
第五步:确认收货、评价。
作/译者:陆嘉恒 出版社:机械工业出版社
Hadoop实战(第2版)(畅销书全新升级、技术更新、内容更全、实战性更强、细节更完善!)
出版日期:2012年11月
ISBN:9787111395836 [十位:7111395832]
页数:516      
定价:¥79.00
店铺售价:¥63.20  十成新  (为您节省:¥15.80
店铺库存:17
注:您当前是在入驻店铺购买,非有路网直接销售。
正在处理购买信息,请稍候……
我要买: * 如何购买
** 关于库存、售价、配送费等具体信息建议直接联系店主咨询。
联系店主:购买咨询请联系我  15165232901
本店已缴纳保证金,请放心购买!【如何赔付?】
《Hadoop实战(第2版)(畅销书全新升级、技术更新、内容更全、实战性更强、细节更完善!)》新旧程度及相关说明:
全部正版,拍下付款即可,缺货会通知,不议价,不包邮,无法指定快递,谢谢亲的理解和支持,祝亲购书愉快!
店主推荐图书:
买家对店铺的满意度评价:查看更多>>
评分
评价内容
评论人
订单图书
《Hadoop实战(第2版)(畅销书全新升级、技术更新、内容更全、实战性更强、细节更完善!)》内容提要:
本书能满足读者全面学习*新的Hadoop技术及其相关技术(Hive、HBase等)的需求,是一本系统且**实践指导意义的Hadoop工具书和参考书。第1版上市后广受好评,被誉为学习Hadoop技术的经典著作之一。与第1版相比,第2版技术更新颖,所有技术都针对*新版进行了更新;内容更全面,几乎每一个章节都增加了新内容,而且增加了新的章节;实战性更强,案例更丰富;细节更**,对第1版中存在的缺陷和不足进行了修正。
本书内容全面,对Hadoop整个技术体系进行了全面的讲解,不仅包括HDFS、MapReduce、YARN等核心内容,而且还包括Hive、HBase、Mahout、Pig、ZooKeeper、Avro、Chukwa等与Hadoop技术相关的重要内容。实战性强,不仅为各个知识点精心设计了大量经典的小案例,而且还包括Yahoo!等多个大公司的企业级案例,可操作系极强。
全书一共19章:第1~2章首先对Hadoop进行了全方位的宏观介绍,然后介绍了Hadoop在三大主流操作系统平台上的安装与配置方法;第3~6章分别详细讲解了MapReduce计算模型、MapReduce的工作机制、M
《Hadoop实战(第2版)(畅销书全新升级、技术更新、内容更全、实战性更强、细节更完善!)》图书目录:
前 言
第1章 Hadoop简介/1
1.1 什么是Hadoop/2
1.1.1 Hadoop概述/2
1.1.2 Hadoop的历史/2
1.1.3 Hadoop的功能与作用/2
1.1.4 Hadoop的优势/3
1.1.5 Hadoop应用现状和发展趋势/3
1.2 Hadoop项目及其结构/3
1.3 Hadoop体系结构/6
1.4 Hadoop与分布式开发/7
1.5 Hadoop计算模型—MapReduce/10
1.6 Hadoop数据管理/10
1.6.1 HDFS的数据管理/10
1.6.2 HBase的数据管理/12
1.6.3 Hive的数据管理/13
1.7 Hadoop集群**策略/15
1.8 本章小结/17
第2章 Hadoop的安装与配置/19
2.1 在Linux上安装与配置Hadoop/20
2.1.1 安装JDK 1.6/20
2.1.2 配置SSH免密码登录/21
2.1.3 安装并运行Hadoop/22
2.2 在Mac OSX上安装与配置Hadoop/24
2.2.1 安装Homebrew/24
2.2.2 使用Homebrew安装Hadoop/25
2.2.3 配置SSH和使用Hadoop/25
2.3 在Windows上安装与配置Hadoop/25
2.3.1 安装JDK 1.6或更高版本/25
2.3.2 安装Cygwin/25
2.3.3 配置环境变量/26
2.3.4 安装sshd服务/26
2.3.5 启动sshd服务/26
2.3.6 配置SSH免密码登录/26
2.3.7 安装并运行Hadoop/26
2.4 安装和配置Hadoop集群/27
2.4.1 网络拓扑/27
2.4.2 定义集群拓扑/27
2.4.3 建立和安装Cluster /28
2.5 日志分析及几个小技巧/34
2.6 本章小结/35
第3章 MapReduce计算模型/36
3.1 为什么要用MapReduce/37
3.2 MapReduce计算模型/38
3.2.1 MapReduce Job/38
3.2.2 Hadoop中的Hello World程序/38
3.2.3 MapReduce的数据流和控制流/46
3.3 MapReduce任务的优化/47
3.4 Hadoop流/49
3.4.1 Hadoop流的工作原理/50
3.4.2 Hadoop流的命令/51
3.4.3 两个例子/52
3.5 Hadoop Pipes/54
3.6 本章小结/56
第4章 开发MapReduce应用程序/57
4.1 系统参数的配置/58
4.2 配置开发环境/60
4.3 编写MapReduce程序/60
4.3.1 Map处理/60
4.3.2 Reduce处理/61
4.4 本地测试/62
4.5 运行MapReduce程序/62
4.5.1 打包/64
4.5.2 在本地模式下运行/64
4.5.3 在集群上运行/64
4.6 网络用户界面/65
4.6.1 JobTracker页面/65
4.6.2 工作页面/65
4.6.3 返回结果/66
4.6.4 任务页面/67
4.6.5 任务细节页面/67
4.7 性能调优/68
4.7.1 输入采用大文件/68
4.7.2 压缩文件/68
4.7.3 过滤数据/69
4.7.4 修改作业属性/71
4.8 MapReduce工作流/72
4.8.1 复杂的Map和Reduce函数/72
4.8.2 MapReduce Job中全局共享数据/74
4.8.3 链接MapReduce Job/75
4.9 本章小结/77
第5章 MapReduce应用案例/79
5.1 单词计数/80
5.1.1 实例描述/80
5.1.2 设计思路/80
5.1.3 程序代码/81
5.1.4 代码解读/82
5.1.5 程序执行/83
5.1.6 代码结果/83
5.1.7 代码数据流/84
5.2 数据去重/85
5.2.1 实例描述/85
5.2.2 设计思路/86
5.2.3 程序代码/86
5.3 排序/87
5.3.1 实例描述/87
5.3.2 设计思路/88
5.3.3 程序代码/89
5.4 单表关联/91
5.4.1 实例描述/91
5.4.2 设计思路/92
5.4.3 程序代码/92
5.5 多表关联/95
5.5.1 实例描述/95
5.5.2 设计思路/96
5.5.3 程序代码/96
5.6 本章小结/98
第6章 MapReduce工作机制/99
6.1 MapReduce作业的执行流程/100
6.1.1 MapReduce任务执行总流程/100
6.1.2 提交作业/101
6.1.3 初始化作业/103
6.1.4 分配任务/104
6.1.5 执行任务/106
6.1.6 更新任务执行进度和状态/107
6.1.7 完成作业/108
6.2 错误处理机制 /108
6.2.1 硬件故障/109
6.2.2 任务失败/109
6.3 作业调度机制/110
6.4 Shuffle和排序/111
6.4.1 Map端/111
6.4.2 Reduce端/113
6.4.3 shuffle过程的优化/114
6.5 任务执行/114
6.5.1 推测式执行/114
6.5.2 任务JVM重用/115
6.5.3 跳过坏记录/115
6.5.4 任务执行环境/116
6.6 本章小结/117
第7章 Hadoop I/O操作/118
7.1 I/O操作中的数据检查/119
7.2 数据的压缩 /126
7.2.1 Hadoop对压缩工具的选择/126
7.2.2 压缩分割和输入分割/127
7.2.3 在MapReduce程序中使用压缩/127
7.3 数据的I/O中序列化操作/128
7.3.1 Writable类/128
7.3.2 实现自己的Hadoop数据类型/137
7.4 针对Mapreduce的文件类/139
7.4.1 SequenceFile类/139
7.4.2 MapFile类/144
7.4.3 ArrayFile、SetFile和BloomMapFile/146
7.5 本章小结/148
第8章 下一代MapReduce:YARN/149
8.1 MapReduce V2设计需求/150
8.2 MapReduce V2主要思想和架构/151
8.3 MapReduce V2设计细节/153
8.4 MapReduce V2优势/156
8.5 本章小结/156
第9章 HDFS详解/157
9.1 Hadoop的文件系统/158
9.2 HDFS简介/160
9.3 HDFS体系结构/161
9.3.1 HDFS的相关概念/161
9.3.2 HDFS的体系结构/162
9.4 HDFS的基本操作/164
9.4.1 HDFS的命令行操作/164
9.4.2 HDFS的Web界面/165
9.5 HDFS常用Java API详解/166
9.5.1 使用Hadoop URL读取数据/166
9.5.2 使用FileSystem API读取数据/167
9.5.3 创建目录/169
9.5.4 写数据/169
9.5.5 删除数据/171
9.5.6 文件系统查询/171
9.6 HDFS中的读写数据流/175
9.6.1 文件的读取/175
9.6.2 文件的写入/176
9.6.3 一致性模型/178
9.7 HDFS命令详解/179
9.7.1 通过distcp进行并行复制/179
9.7.2 HDFS的平衡/180
9.7.3 使用Hadoop归档文件/180
9.7.4 其他命令/183
9.8 WebHDFS/186
9.8.1 WebHDFS的配置/186
9.8.2 WebHDFS命令/186
9.9 本章小结/190
第10章 Hadoop的管理/191
10.1 HDFS文件结构/192
10.2 Hadoop的状态监视和管理工具/196
10.2.1 审计日志/196
10.2.2 监控日志/196
10.2.3 Metrics/197
10.2.4 Java管理扩展 /199
10.2.5 Ganglia/200
10.2.6 Hadoop管理命令/202
10.3 Hadoop集群的维护/206
10.3.1 **模式/206
10.3.2 Hadoop的备份/207
10.3.3 Hadoop的节点管理/208
10.3.4 系统升级/210
10.4 本章小结/212
第11章 Hive详解/213
11.1 Hive简介/214
11.1.1 Hive的数据存储/214
11.1.2 Hive的元数据存储/216
11.2 Hive的基本操作/216
11.2.1 在集群上安装Hive/216
11.2.2 配置MySQL存储Hive元数据/218
11.2.3 配置Hive/220
11.3 Hive QL详解/221
11.3.1 数据定义(DDL)操作/221
11.3.2 数据操作(DML)/231
11.3.3 SQL操作/233
11.3.4 Hive QL使用实例/235
11.4 Hive网络(Web UI)接口/237
11.4.1 Hive网络接口配置/237
11.4.2 Hive网络接口操作实例/238
11.5 Hive的JDBC接口//241
11.5.1 Eclipse环境配置/241
11.5.2 程序实例/241
11.6 Hive的优化/244
11.7 本章小结/246
第12章 HBase详解/247
12.1 HBase简介/248
12.2 HBase的基本操作/249
12.2.1 HBase的安装/249
12.2.2 运行HBase /253
12.2.3 HBase Shell/255
12.2.4 HBase配置/258
12.3 HBase体系结构/260
12.3.1 HRegion/260
12.3.2 HRegion服务器/261
12.3.3 HBase Master服务器/262
12.3.4 ROOT表和META表/262
12.3.5 ZooKeeper/263
12.4 HBase数据模型/263
12.4.1 数据模型/263
12.4.2 概念视图/264
12.4.3 物理视图/264
12.5 HBase与RDBMS/265
12.6 HBase与HDFS/266
12.7 HBase客户端/266
12.8 Java API /267
12.9 HBase编程 /273
12.9.1 使用Eclipse开发HBase应用程序/273
12.9.2 HBase编程/275
12.9.3 HBase与MapReduce/278
12.10 模式设计/280
12.10.1 模式设计应遵循的原则/280
12.10.2 学生表/281
12.10.3 事件表/282
12.11 本章小结/283
第13章 Mahout详解/284
13.1 Mahout简介/285
13.2 Mahout的安装和配置/285
13.3 Mahout API简介/288
13.4 Mahout中的频繁模式挖掘/290
13.4.1 什么是频繁模式挖掘/290
13.4.2 Mahout中的频繁模式挖掘/290
13.5 Mahout中的聚类和分类/292
13.5.1 什么是聚类和分类/292
13.5.2 Mahout中的数据表示/293
13.5.3 将文本转化成向量/294
13.5.4 Mahout中的聚类、分类算法/295
13.5.5 算法应用实例/299
13.6 Mahout应用:建立一个**引擎/304
13.6.1 **引擎简介/304
13.6.2 使用Taste构建一个简单的**引擎/305
13.6.3 简单分布式系统下基于产品的**系统简介/307
13.7 本章小结/309
第14章 Pig详解/310
14.1 Pig简介/311
14.2 Pig的安装和配置 /311
14.2.1 Pig的安装条件/311
14.2.2 Pig的下载、安装和配置/312
14.2.3 Pig运行模式/313
14.3 Pig Latin语言/315
14.3.1 Pig Latin语言简介/315
14.3.2 Pig Latin的使用/316
14.3.3 Pig Latin的数据类型/318
14.3.4 Pig Latin关键字/319
14.4 用户定义函数 /323
14.4.1 编写用户定义函数/324
14.4.2 使用用户定义函数/325
14.5 Zebra简介 /326
14.5.1 Zebra的安装/326
14.5.2 Zebra的使用简介/327
14.6 Pig实例 /328
14.6.1 Local模式/328
14.6.2 MapReduce模式/330
14.7 Pig进阶/331
14.7.1 数据实例/331
14.7.2 Pig数据分析/332
14.8 本章小结/336
第15章 ZooKeeper详解/337
15.1 ZooKeeper简介/338
15.1.1 ZooKeeper的设计目标/338
15.1.2 数据模型和层次命名空间/339
15.1.3 ZooKeeper中的节点和临时节点/339
15.1.4 ZooKeeper的应用/340
15.2 ZooKeeper的安装和配置/340
15.2.1 安装ZooKeeper /340
15.2.2 配置ZooKeeper/346
15.2.3 运行ZooKeeper/348
15.3 ZooKeeper的简单操作/350
15.3.1 使用ZooKeeper命令的简单操作步骤/350
15.3.2 ZooKeeper API的简单使用/352
15.4 ZooKeeper的特性/355
15.4.1 ZooKeeper的数据模型/355
15.4.2 ZooKeeper会话及状态/356
15.4.3 ZooKeeper watches/357
15.4.4 ZooKeeper ACL/358
15.4.5 ZooKeeper的一致性保证/359
15.5 使用ZooKeeper进行Leader选举/359
15.6 ZooKeeper锁服务/360
15.6.1 ZooKeeper中的锁机制/360
15.6.2 ZooKeeper提供的一个写锁的实现/361
15.7 使用ZooKeeper创建应用程序 /363
15.7.1 使用Eclipse开发ZooKeeper应用程序/363
15.7.2 应用程序实例/365
15.8 BooKeeper/369
15.9 本章小结/371
第16章 Avro详解/372
16.1 Avro介绍/373
16.1.1 模式声明/374
16.1.2 数据序列化/378
16.1.3 数据排列顺序/380
16.1.4 对象容器文件 /381
16.1.5 协议声明/382
16.1.6 协议传输格式/383
16.1.7 模式解析/386
16.2 Avro的C/C++实现/387
16.3 Avro的Java实现/398
16.4 GenAvro(Avro IDL)语言/402
16.5 Avro SASL概述/406
16.6 本章小结/407
第17章 Chukwa详解/409
17.1 Chukwa简介/410
17.2 Chukwa架构/411
17.2.1 客户端及其数据模型/412
17.2.2 收集器/413
17.2.3 归档器和分离解析器/414
17.2.4 HICC/415
17.3 Chukwa的可靠性/415
17.4 Chukwa集群搭建/416
17.4.1 基本配置要求/416
17.4.2 Chukwa的安装/416
17.4.3 Chukwa的运行/419
17.5 Chukwa数据流的处理/424
17.6 Chukwa与其他监控系统比较/425
17.7 本章小结/426
本章参考资料/426
第18章 Hadoop的常用插件与开发/428
18.1 Hadoop Studio的介绍和使用/429
18.1.1 Hadoop Studio的介绍/429
18.1.2 Hadoop Studio的安装配置/430
18.1.3 Hadoop Studio的使用举例/430
18.2 Hadoop Eclipse的介绍和使用/436
18.2.1 Hadoop Eclipse的介绍/436
18.2.2 Hadoop Eclipse的安装配置/437
18.2.3 Hadoop Eclipse的使用举例/438
18.3 Hadoop Streaming的介绍和使用/440
18.3.1 Hadoop Streaming的介绍/440
18.3.2 Hadoop Streaming的使用举例/444
18.3.3 使用Hadoop Streaming常见的问题/446
18.4 Hadoop Libhdfs的介绍和使用/448
18.4.1 Hadoop Libhdfs的介绍/448
18.4.2 Hadoop Libhdfs的安装配置/448
18.4.3 Hadoop Libhdfs API简介/448
18.4.4 Hadoop Libhdfs的使用举例/449
18.5 本章小结/450
第19章 企业应用实例/452
19.1 Hadoop在Yahoo!的应用/453
19.2 Hadoop在eBay的应用/455
19.3 Hadoop在百度的应用/457
19.4 即刻搜索中的Hadoop/460
19.4.1 即刻搜索简介/460
19.4.2 即刻Hadoop应用架构/460
19.4.3 即刻Hadoop应用分析/463
19.5 Facebook中的Hadoop和HBase/463
19.5.1 Facebook中的任务特点/464
19.5.2 MySQL VS Hadoop+HBase/466
19.5.3 Hadoop和HBase的实现/467
19.6 本章小结/472
本章参考资料/472
附录A 云计算在线检测平台/474
附录B Hadoop安装、运行与使用说明/484
附录C 使用DistributedCache的MapReduce程序/491
附录D 使用ChainMapper和ChainReducer的MapReduce程序/495
《Hadoop实战(第2版)(畅销书全新升级、技术更新、内容更全、实战性更强、细节更完善!)》文章节选:
为什么写这本书
计算技术已经改变了我们的工作、学习和生活。分布式的云计算技术是当下IT领域*热门的话题之一,它通过整合资源,为降低成本和能源消耗提供了一种简化、集中的计算平台。这种低成本、高扩展、高性能的特点促使其迅速发展,遍地开发,悄然改变着整个行业的面貌。社会各界对云计算的广泛研究和应用无疑证明了这一点:在学术界,政府和很多高校十分重视对云计算技术的研究和投入;在产业界,各大IT公司也在研究和开发相关的云计算产品上投入了大量的资源。这些研究和应用推动与云计算相关的新兴技术和产品不断涌现,传统的信息服务产品向云计算模式转型。
Hadoop作为Apache基金会的开源项目,是云计算研究和应用*具代表性的产品。Hadoop分布式框架为***提供了一个分布式系统的基础架构,用户可以在不了解分布式系统底层细节的情况下开发分布式的应用,充分利用由Hadoop统一起来的集群存储资源、网络资源和计算资源,实现基于海量数据的高速运算和存储。
在编写本书**版时,鉴于Hadoop技术本身和应用环境较为复杂,入门和实践难度较大,而关于Hadoop的参考资料又非常少,笔者根据自己的实际研究和使用经历,理论与实践并重,从基础出发,为读者全面呈现了Hadoop的相关知识,旨在为Hadoop学习者提供一本工具书。但是时至**,Hadoop的版本已从本书**版介绍的0.20升级至正式版1.0,读者的需求也从入门发展到更加深入地了解Hadoop的实现细节,了解Hadoop的更新和发展的趋势,了解Hadoop在企业中的应用。虽然本书**版受到广大Hadoop学习者的欢迎,但是为了保持对*新版Hadoop的支持,进一步满足读者的需求,继续推动Hadoop技术在国内的普及和发展,笔者不惜时间和精力,搜集资料,亲自实践,编写了本书第二版。
第2版与第1版的区别
基于Hadoop 1.0版本和相关项目的*新版,本书在第1版的基础上进行了更新和调整:
每章都增加了新内容(如第1章增加了与Hadoop**相关的知识,第2增加了在Max OS X系统上安装Hadoop的介绍,第9章增加了WebHDFS等);
部分章节深入剖析了Hadoop源码;
增加了对Hadoop接口及实践方面的介绍(附录C和附录D);
增加了对下一代MapReduce的介绍(第8章);
将企业应用介绍移到本书*后并更新了内容(第19章);
增加了对Hadoop安装和代码执行的集中介绍(附录B)。
本书面向的读者
在编写本书时,笔者力图使不同背景、职业和层次的读者都能从这本书中获益。
如果你是专业技术人员,本书将带领你深入云计算的世界,全面掌握Hadoop及其相关技术细节,帮助你使用Hadoop技术解决当前面临的问题。
如果你是系统架构人员,本书将成为你搭建Hadoop集群、管理集群,并迅速定位和解决问题的工具书。
如果你是高等院校计算机及相关专业的学生,本书将为你在课堂之外了解*新的IT技术打开了一扇窗户,帮助你拓宽视野,完善知识结构,为迎接未来的挑战做好知识储备。
在学习本书之前,大家应该具有如下的基础:
要有一定的分布式系统的基础知识,对文件系统的基本操作有一定的了解。
要有一定的Linux操作系统的基础知识。
有较好的编程基础和阅读代码的能力,尤其是要能够熟练使用Java语言。
对数据库、数据仓库、系统监控,以及网络爬虫等知识*好也能有一些了解。
如何阅读本书
从整体内容上讲,本书包括19章和4个附录。前10章、第18章、第19章和4个附录主要介绍了Hadoop背景知识、Hadoop集群安装和代码执行、MapReduce机制及编程知识、HDFS实现细节及管理知识、Hadoop应用。第11章至第17章结合*新版本详细介绍了与Hadoop相关的其他项目,分别为Hive、HBase、Mahout、Pig、ZooKeeper、Avro、Chukwa,以备读者扩展知识面之用。
在阅读本书时,笔者建议大家先系统地学习Hadoop部分的理论知识(第1章、第3章、第6章至第10章),这样可对Hadoop的核心内容和实现机制有一个很好的理解。在此基础上,读者可进一步学习Hadoop部分的实践知识(第2章、第4章、第5章、第18章、第19章和4个附录),尝试搭建自己的Hadoop集群,编写并运行自己的MapReduce代码。对于本书中关于Hadoop相关项目的介绍,大家可以有选择地学习。在内容的编排上,各章的知识点是相对独立的,是并行的关系,因此大家可以有选择地进行学习。当然,如果时间允许,还是建议大家系统地学习全书的内容,这样能够对Hadoop系统的机制有一个完整而系统的理解,为今后深入地研究和实践Hadoop及云计算技术打下坚实的基础。
另外,笔者希望大家在学习本书时能一边阅读,一边根据书中的指导动手实践,亲自实践本书中所给出的编程范例。例如,先搭建一个自己的云平台,如果条件受限,可以选择伪分布的方式。
在线资源及勘误
在本书的附录中,提供了一个基于Hadoop的云计算在线测试平台(http://cloud-computing.ruc.edu.cn),大家可以先注册一个免费账户,然后即可体验Hadoop平台,通过该平台大家可在线编写MapReduce应用并进行自动验证。如果大家希望获得该平台的验证码,或者希望获得完全编程测试和理论测试的权限,请发邮件到jiahenglu@gmail.com。读者也可访问Hadoop的官方网站(hadoop.apache.org)阅读官方介绍文档,下载学习示例代码。
在本书的撰写和相关技术的研究中,尽管笔者投入了大量的精力、付出了艰辛的努力,但是受知识水平所限,书中存在不足和疏漏之处在所难免,恳请大家批评指正。如果有任何问题和建议,可发送电子邮件至jiahenglu@gmail.com或jiahenglu@ruc.edu.cn。
致谢
在本书的编写过程中,很多Hadoop方面的实践者和研究者做了大量的工作,他们是冯博亮、程明、徐文韬、张林林、朱俊良、许翔、陈东伟、谭果、林春彬等,在此表示感谢。 陆嘉恒
2012年6月于北京
《Hadoop实战(第2版)(畅销书全新升级、技术更新、内容更全、实战性更强、细节更完善!)》编辑推荐与评论:
·第1版广受好评,第2版基于Hadoop及其相关技术*新版本撰写,从多角度做了全面的修订和补充。不仅详细讲解了新一代的Hadoop技术,而且全面介绍了Hive、HBase、Mahout、Pig、ZooKeeper、Avro、Chukwa等重要技术,是系统学习Hadoop技术的**之作
《Hadoop实战(第2版)(畅销书全新升级、技术更新、内容更全、实战性更强、细节更完善!)》作者介绍:
陆嘉恒,**数据库专家和云计算技术专家,对Hadoop及其相关技术有非常深入的研究,主持了多个分布式云计算项目的研究与实施,积累了丰富的实践经验。获得新加坡国立大学博士学位,美国加利福尼亚大学尔湾分校(University of California, Irvine) 博士后,现为中国人民大学教授,博士生导师。此外,他对数据挖掘和Web信息搜索等技术也有深刻的认识。