出版日期:2009年08月
ISBN:9787030250445
[十位:7030250443]
页数:264
定价:¥27.00
店铺售价:¥18.80
(为您节省:¥8.20)
店铺库存:15
本
正在处理购买信息,请稍候……
我要买:
本
* 如何购买
联系店主:
15165232901
《线性代数与解析几何教程(上册)》新旧程度及相关说明:
全部正版,拍下付款即可,缺货会通知,不议价,不包邮,无法指定快递,谢谢亲的理解和支持,祝亲购书愉快!
店主推荐图书:
-
¥118.40
-
100分
满分
确认收货后30天未评价,系统默认好评!
[2024-12-29 15:53:22]
张**
广州市
-
100分
满分
确认收货后30天未评价,系统默认好评!
[2024-12-27 20:22:51]
邱**
泰州市
-
100分
满分
确认收货后30天未评价,系统默认好评!
[2024-12-27 20:14:57]
沈*
宜昌市
-
100分
满分
确认收货后30天未评价,系统默认好评!
[2024-12-24 22:47:14]
鄂尔多斯市
-
100分
满分
确认收货后30天未评价,系统默认好评!
[2024-12-23 21:17:39]
苑**
包头市
《线性代数与解析几何教程(上册)》内容提要:
本书讲述了高等院校线性代数与解析几何课程的基本内容,既突出了线性代数作为各专业公共课程的工具性和操作性,也反映了线性代数与解析几何、多项式知识的思想性以及它们之间的内在联系,本书在内容处理上力求翔实流畅、易学易教,本书分上、下两册。上册内容包括空间向量、直线与平面、行列式、矩阵与向量、多项式、矩阵的特征系与相似对角化等6章。每节后配备了一定数量的练习题,章后配备有综合性较强的习题。上、下册均有符号说明、部分习题答案与提示,并附有名词索引,便于阅读查找。
本书为板块结构,遵循按需选取,本书既可作为数学各专业学生的教学用书,也可作为非数学专业学生的教学用书,对其他课程的教师也具有参考价值。
《线性代数与解析几何教程(上册)》图书目录:
前言
符号说明
第1章 空间向量
1.1 空间向量及其线性运算
1.2 向量的共线与共面
1.3 向量与坐标系
1.4 内积
1.5 外积与混合积
1.6 外积的性质
第1章补充习题
第2章 直线与平面
2.1 直线的方向
2.2 点线关系
2.3 平面的法方向
2.4 点面关系
2.5 线面关系
第2章补充习题
第3章 行列式
3.1 行列式的概念
3.2 行列式的性质
3.3 行列式按行按列展开
3.4 克拉默定理
3.5 行列式的计算
第4章 矩阵与向量
4.1 从线性方程组到矩阵
4.2 矩阵运算
4.3 矩阵的幂矩阵转置
4.4 向量的线性关系
4.5 极大线性无关组
4.6 *的子空间
4.7 初等变换
4.8 初等变换与行列式
4.9 矩阵的秩
4.10 逆矩阵
4.11 矩阵等价标准形
4.12 线性方程组:齐次情形
4.13 线性方程组:非齐次情形
4.14 里昂捷夫经济模型十
第4章补充习题
第5章 多项式
5.1 多项式环
5.2 *大公因式
5.3 因式分解定理
5.4 多项式的根
第5章补充习题
第6章 矩阵的特征系与相似对角化
6.1 特征向量与相似对角化
6.2 特征根与相似对角化
6.3 凯莱一哈密顿定理
6.4 极小多项式与相似对角化
6.5 矩阵相似三角化
6.6 列斯里群体模型t
第6章补充习题
部分习题答案与提示
索引
《线性代数与解析几何教程(上册)》文章节选:
第1章 空间向量
解析几何用代数方法研究几何问题.空间的基本几何对象是点与向量。在空间建立坐标系,点与向量就转化为坐标,几何对象和代数形式之间就有了自由地相互转换的桥梁:几何问题有了代数表达,代数问题有了几何形象。
本章讨论空间向量及其运算,它们是讨论直线和平面的主要工具,也是线性代数的极好思想模型.
恒以*记所有实数的集合,*与实数轴上的点一一对应。
1.1空间向量及其线性运算
物理学提供了空间向量的典型模型,如力、速度、加速度、力矩等。它们的共同特点是具有三要素:大小、方向、作用点(也就是向量的起点)。从某种意义来说,“作用点”这个要素是力和速度等物理向量在具体实现时的要素。例如,如果两个力大小相等、方向相同,那么它们实际上就是相等的力,见图1.1.1,只是在这个力作用在具体物体上时“作用点”这个要素才起作用.所以暂不考虑“作用点”这个要素。因此,在解析几何中,称有大小、有方向的量为向量。
本书中,通常用小写希腊字母a,B等来标记向量,用像图1.1.1那样的有向线段来图示向量。
向量a的大小称为向量Q的**值,或称长度,或称模,记作*。
如果向量a与B大小相等、方向相同,则称为相等的向量,记作a=B。
三点说明:(1)如上所述,没有考虑物理中的物理向量具体作用时的“作用点”这个要素,所以我们说的向量也称为自由向量。注意,本书中的“向量”一词在没有特别说明时都是指这种自由向量。
……