图书分类
-
新闻传播(4)
-
成功励志(7)
-
旅游地理(1)
-
心理(4)
-
汽车与交通运输(6)
-
法律(1)
-
医学卫生(6)
-
自然科学(168)
-
社会科学(5)
-
政治军事(3)
-
哲学(4)
-
教育考试(24)
-
工具书(4)
-
活动图书(69)
-
计算机与网络(251)
-
管理(21)
-
经济金融(34)
-
科技工程(255)
-
语言学习(110)
-
艺术(7)
-
文学小说(33)
-
文化历史(4)
-
建筑(1)
店铺公告
购书提示:
全国快递费6元,满48元包邮!48元以内只收6元邮费。包邮一律发汇通快递!宁夏、西藏、内蒙、新疆、甘肃、青海不在包邮范围!
团购请提前联系改价!13880722720 QQ:553077968
如果对所购图书有任何疑问可联系客服,我们支持7天无理由退换货(签收当天联系),如非商品本身问题,快递费由买家承担!
本店所有图书默认不配光盘、激活码及其它附件,如果有需要请购买前说明。
【如客服不在线】您的站内消息或订单不能及时答复、处理,敬请谅解,有疑问直接留言即可,上线后一定马上给予答复处理。祝您购物愉快!
【特别提醒】请在本店确认后24小时内付款,超期不保证库存,取消订单,敬请理解!谢谢!
【快递费用】根据实际距离进行更改,一般首重在6元(偏远地区除外)一次性购买超过48元,大部分城市包邮!48元以内只收6元邮费 本店默认发汇通快递
【关于发货】付款后24小时内极速发货。
【尊重劳动】本书店书籍都是高校回收二手正版教材,购买前请看店铺公告,如遇问题,请联系店主协商,我们一定会为您满意解决,请不要随意给中评或差评或投诉!
【图书新旧程度】本店所有二手正版教材均在7-8成新左右,封皮较新;内页有笔记(择优发货,或许无笔记),不影响阅读,可帮助复习学习,【如在意笔记的请不要下订单,如对品相苛刻的也不要下单��,【也不要因为笔记多和品相而投诉或者差评中评】。不缺页,不影响正常阅读。【是全新教材价格的四折不到】!具体看图书描述。因为均为二手图书,所以不一定配有光盘、磁带、学习卡等,我们将择优发货。谢谢,如需要在店家确认后请尽快付款,实体店销售中,付款确保购买,库存变化快,付款后24小时内发货。谢谢!不周之处,敬请谅解!因为二手教材,价格低廉,以上说明很详细了,请谨慎下单!
本店自营官网:www.cdzhibo.com
关于寒假发货重要通知
亲,寒假期间,本店从2017年1月16号停止发货,给您带来的不便请您谅解。放假期间本店不接急单,正常下单的亲本店2017年2月4号(大年初八)会统一安排发货哟。?在此提前祝亲们新年快乐,万事大吉!
发布时间:2017年01月14日
店铺介绍
本店是国内最大二手图书专业书店,主营电子,电路,微波,射频,雷达,通信,网络,信号,计算机语言编程,单片机,嵌入式,操作系统,软硬件原理,图形图像,网页制作以及经管,财经等各种考试类书籍。品种齐全,价格最低。欢迎广大读者零购,团购。
入驻时间:2013年05月30日
交易帮助
第一步:选择图书放入购物车。
第二步:结算、填写收货地址。
第三步:担保付款或银行汇款。
第四步:卖家发货。
第五步:确认收货、评价。
出版日期:2012年08月
ISBN:9787111391401
[十位:7111391403]
页数:468
定价:¥79.00
店铺售价:¥36.00
(为您节省:¥43.00)
店铺库存:134
本
正在处理购买信息,请稍候……
我要买:
本
* 如何购买
联系店主:
13880722720
店主推荐图书:
-
¥31.20
-
¥9.90
-
¥38.00
-
¥44.00
-
100分
满分
确认收货后30天未评价,系统默认好评!
[2024-12-01 10:45:21]
赵**
合肥市
-
100分
满分
确认收货后30天未评价,系统默认好评!
[2024-11-29 06:59:25]
江*
镇江市
-
100分
满分
确认收货后30天未评价,系统默认好评!
[2024-11-15 09:42:12]
小*
太原市
-
100分
满分
确认收货后30天未评价,系统默认好评!
[2024-11-12 17:37:29]
刘*
北京市
-
100分
满分
确认收货后30天未评价,系统默认好评!
[2024-11-02 14:00:47]
小*
大理白族自治州
《数据挖掘:概念与技术(原书第3版)》内容提要:
《数据挖掘:概念与技术(原书第3版)》完整全面地讲述数据挖掘的概念、方法、技术和*新研究进展。《数据挖掘:概念与技术(原书第3版)》对前两版做了全面修订,加强和重新组织了全书的技术内容,**论述了数据预处理、频繁模式挖掘、分类和聚类等的内容,还全面讲述了OLAP和离群点检测,并研讨了挖掘网络、复杂数据类型以及重要应用领域。
《数据挖掘:概念与技术(原书第3版)》图书目录:
出版者的话
中文版序
译者序
译者简介
第3版序
第2版序
前言
致谢
作者简介
第1章 引论
1.1 为什么进行数据挖掘
1.1.1 迈向信息时代
1.1.2 数据挖掘是信息技术的进化
1.2 什么是数据挖掘
1.3 可以挖掘什么类型的数据
1.3.1 数据库数据
1.3.2 数据仓库
1.3.3 事务数据
1.3.4 其他类型的数据
1.4 可以挖掘什么类型的模式
1.4.1 类∕概念描述:特征化与区分
1.4.2 挖掘频繁模式、关联和相关性
1.4.3 用于预测分析的分类与回归
1.4.4 聚类分析
1.4.5 离群点分析
1.4.6 所有模式都是有趣的吗
1.5 使用什么技术
1.5.1 统计学
1.5.2 机器学习
1.5.3 数据库系统与数据仓库
1.5.4 信息检索
1.6 面向什么类型的应用
1.6.1 商务智能
1.6.2 Web搜索引擎
1.7 数据挖掘的主要问题
1.7.1 挖掘方法
1.7.2 用户界面
1.7.3 有效性和可伸缩性
1.7.4 数据库类型的多样性
1.7.5 数据挖掘与社会
1.8 小结
1.9 习题
1.10 文献注释
第2章 认识数据
2.1 数据对象与属性类型
2.1.1 什么是属性
2.1.2 标称属性
2.1.3 二元属性
2.1.4 序数属性
2.1.5 数值属性
2.1.6 离散属性与连续属性
2.2 数据的基本统计描述
2.2.1 **趋势度量:均值、中位数和众数
2.2.2 度量数据散布:极差、四分位数、方差、标准差和四分位数极差
2.2.3 数据的基本统计描述的图形显示
2.3 数据可视化
2.3.1 基于像素的可视化技术
2.3.2 几何投影可视化技术
2.3.3 基于图符的可视化技术
2.3.4 层次可视化技术
2.3.5 可视化复杂对象和关系
2.4 度量数据的相似性和相异性
2.4.1 数据矩阵与相异性矩阵
2.4.2 标称属性的邻近性度量
2.4.3 二元属性的邻近性度量
2.4.4 数值属性的相异性:闵可夫斯基距离
2.4.5 序数属性的邻近性度量
2.4.6 混合类型属性的相异性
2.4.7 余弦相似性
2.5 小结
2.6 习���
2.7 文献注释
第3章 数据预处理
3.1 数据预处理:概述
3.1.1 数据质量:为什么要对数据预处理
3.1.2 数据预处理的主要任务
3.2 数据清理
3.2.1 缺失值
3.2.2 噪声数据
3.2.3 数据清理作为一个过程
3.3 数据集成
3.3.1 实体识别问题
3.3.2 冗余和相关分析
3.3.3 元组重复
3.3.4 数据值冲突的检测与处理
3.4 数据归约
3.4.1 数据归约策略概述
3.4.2 小波变换
3.4.3 主成分分析
3.4.4 属性子集选择
3.4.5 回归和对数线性模型:参数化数据归约
3.4.6 直方图
3.4.7 聚类
3.4.8 抽样
3.4.9 数据立方体聚集
3.5 数据变换与数据离散化
3.5.1 数据变换策略概述
3.5.2 通过规范化变换数据
3.5.3 通过分箱离散化
3.5.4 通过直方图分析离散化
3.5.5 通过聚类、决策树和相关分析离散化
3.5.6 标称数据的概念分层产生
3.6 小结
3.7 习题
3.8 文献注释
第4章 数据仓库与联机分析处理
4.1 数据仓库:基本概念
4.1.1 什么是数据仓库
4.1.2 操作数据库系统与数据仓库的区别
4.1.3 为什么需要分离的数据仓库
4.1.4 数据仓库:一种多层体系结构
4.1.5 数据仓库模型:企业仓库、数据集市和虚拟仓库
4.1.6 数据提取、变换和装入
4.1.7 无数据库
4.2 数据仓库建模:数据立方体与OLAP
4.2.1 数据立方体:一种多维数据模型
4.2.2 星形、雪花形和事实星座:多维数据模型的模式
4.2.3 维:概念分层的作用
4.2.4 度量的分类和计算
4.2.5 典型的OLAP操作
4.2.6 查询多维数据库的星网查询模型
4.3 数据仓库的设计与使用
4.3.1 数据仓库的设计的商务分析框架
4.3.2 数据仓库的设计过程
4.3.3 数据仓库用于信息处理
4.3.4 从联机分析处理到多维数据挖掘
4.4 数据仓库的实现
4.4.1 数据立方体的有效计算:概述
4.4.2 索引OLAP数据:位图索引和连接索引
4.4.3 OLAP查询的有效处理
4.4.4 OLAP服务器结构:ROLAP、MOLAP、HOLAP的比较
4.5 数据泛化:面向属性的归纳
4.5.1 数据特征的面向属性的归纳
4.5.2 面向属性归纳的有效实现
4.5.3 类比较的面向属性归纳
4.6 小结
4.7 习题
4.8 文献注释
第5章 数据立方体技术
5.1 数据立方体计算:基本概念
5.1.1 立方体物化:完全立方体、冰山立方体、闭立方体和立方体外壳
5.1.2 数据立方体计算的一般策略
5.2 数据立方体计算方法
5.2.1 完全立方体计算的多路数组聚集
5.2.2 BUC:从顶点方体向下计算冰山立方体
5.2.3 Star—Cubing:使用动态星树结构计算冰山立方体
5.2.4 为快速高维OLAP预计算壳片段
5.3 使用探索立方体技术处理**查询
5.3.1 抽样立方体:样本数据上基于OLAP的挖掘
5.3.2 排序立方体:top—k查询的有效计算
5.4 数据立方体空间的多维数据分析
5.4.1 预测立方体:立方体空间的预测挖掘
5.4.2 多特征立方体:多粒度上的复杂聚集
5.4.3 基于异常的、发现驱动的立方体空间探查
5.5 小结
5.6 习题
5.7 文献注释
第6章 挖掘频繁模式、关联和相关性:基本概念和方法
6.1 基本概念
6.1.1 购物篮分析:一个诱发例子
6.1.2 频繁项集、闭项集和关联规则
6.2 频繁项集挖掘方法
6.2.1 Apriori算法:通过限制候选产**现频繁项集
6.2.2 由频繁项集产生关联规则
6.2.3 提高Apriori算法的效率
6.2.4 挖掘频繁项集的模式增长方法
6.2.5 使用垂直数据格式挖掘频繁项集
6.2.6 挖掘闭模式和极大模式
6.3 哪些模式是有趣的:模式评估方法
6.3.1 强规则不一定是有趣的
6.3.2 从关联分析到相关分析
6.3.3 模式评估度量比较
6.4 小结
6.5 习题
6.6 文献注释
第7章 **模式挖掘
7.1 模式挖掘:一个路线图
7.2 多层、多维空间中的模式挖掘
7.2.1 挖掘多层关联规则
7.2.2 挖掘多维关联规则
7.2.3 挖掘量化关联规则
7.2.4 挖掘稀有模式和负模式
7.3 基于约束的频繁模式挖掘
7.3.1 关联规则的元规则制导挖掘
7.3.2 基于约束的模式产生:模式空间剪枝和数据空间剪枝
7.4 挖掘高维数据和巨型模式
7.5 挖掘压缩或近似模式
7.5.1 通过模式聚类挖掘压缩模式
7.5.2 提取感知冗余的top—k模式
7.6 模式探索与应用
7.6.1 频繁模式的语义注解
7.6.2 模式挖掘的应用
7.7 小结
7.8 习题
7.9 文献注释
第8章 分类:基本概念
8.1 基本概念
8.1.1 什么是分类
8.1.2 分类的一般方法
8.2 决策树归纳
8.2.1 决策树归纳
8.2.2 属性选择度量
8.2.3 树剪枝
8.2.4 可伸缩性与决策树归纳
8.2.5 决策树归纳的可视化挖掘
8.3 贝叶斯分类方法
8.3.1 贝叶斯定理
8.3.2 朴素贝叶斯分类
8.4 基于规则的分类
8.4.1 使用IF—THEN规则分类
8.4.2 由决策树提取规则
8.4.3 使用顺序覆盖算法的规则归纳
8.5 模型评估与选择
8.5.1 评估分类器性能的度量
8.5.2 保持方法和随机二次抽样
8.5.3 交又验证
8.5.4 自助法
8.5.5 使用统计显著性检验选择模型
8.5.6 基于成本效益和ROC曲线比较分类器
8.6 提高分类准确率的技术
8.6.1 组合分类方法简介
8.6.2 装袋
8.6.3 提升和AdaBoost
8.6.4 随机森林
8.6.5 提高类不平衡数据的分类准确率
8.7 小结
8.8 习题
8.9 文献注释
第9章 分类:**方法
9.1 贝叶斯信念网络
9.1.1 概念和机制
9.1.2 训练贝叶斯信念网络
9.2 用后向传播分类
9.2.1 多层前馈神经网络
9.2.2 定义网络拓扑
9.2.3 后向传播
9.2.4 黑盒内部:后向传播和可解释性
9.3 支持向量机
9.3.1 数据线性可分的情况
9.3.2 数据非线性可分的情况
9.4 使用频繁模式分类
9.4.1 关联分类
9.4.2 基于有区别力的频繁模式分类
9.5 惰性学习法(或从近邻学习)
9.5.1 k—*近邻分类
9.5.2 基于案例的推理
9.6 其他分类方法
9.6.1 遗传算法
9.6.2 粗糙集方法
9.6.3 模糊集方法
9.7 关于分类的其他问题
9.7.1 多类分类
9.7.2 半监督分类
9.7.3 主动学习
9.7.4 迁移学习
9.8 小结
9.9 习题
9.10 文献注释
……
第10章 聚类分析:基本概念和方法
第11章 **聚类分析
第12章 离群点检测
第13章 数据挖掘的发展趋势和研究前沿
参考文献
索引