网站购物车   | 店铺购物车  
店铺平均得分:99.67 分,再接再厉!!!【查看全部评价】
评分 40分 50分 60分 70分 80分 90分 100分
数量 5 1 2 4 25 86 5730
本店铺共有 7 笔投诉记录,投诉率 0% ,低于平均投诉率 1% 【查看详细】
投诉类型
数量
比例
商品问题
2
29%
发货问题
2
29%
退款问题
2
29%
其他
1
14%
已解决
7
100%
店主称呼:开心   联系方式:购买咨询请联系我  18507486003    地址:湖南省 长沙市 岳麓区 岳麓街道 罗小姐书店
促销广告:全网最低价,见钱就卖
图书分类
店铺公告
【拍前必读】
2022年1月24日 大家好 目前快递已停发 年后初九9(2月9号)正常发货 给大家带来有便 敬请谅解 谢谢大家的配合 祝大家新年快乐。






本店经营正版二手书,由于旧书库存不准确经常断货,为保证您的利益,拍前请务必联系卖家咨询库存情况.
1. 注意:本店默认 中通 邮政快递,不接受指定快递。

2.正版二手书6-8层新左右 ,班级团购联系旺旺质量从优,价格优惠!

3. 二手书新旧不一,没有可比性 ,有笔迹有划线,书完好无损不缺页,检查好后发货,二手书一般没有光盘,下单前请同学们考虑好是否需要在下单,本店都是挑选好的发货,发货后二手书不支持退换货,因买家原因拒签退货者,需要买家承担来回快递费用,望谅解!祝同学们学习进步,购物愉快!!
店铺介绍
书籍都是正版旧书 发韵达快递.本店专营大学生二手教材,满19元包邮几个偏远省分除外!真实库存,欢迎广大朋友来购物!每天下午发货,快递为韵达快递。量大可以直接交流,价格更加实惠,便宜处理,清仓出货,见钱就卖。
交易帮助
第一步:选择图书放入购物车。
第二步:结算、填写收货地址。
第三步:担保付款或银行汇款。
第四步:卖家发货。
第五步:确认收货、评价。
作/译者:朱小燕 马少平 出版社:清华大学出版社
人工智能(内容一致,印次、封面或原价不同,统一售价,随机发货)
出版日期:2004年08月
ISBN:9787302089117 [十位:7302089116]
页数:324      
定价:¥39.90
店铺售价:¥38.00 (为您节省:¥1.90
店铺库存:1
注:您当前是在入驻店铺购买,非有路网直接销售。
正在处理购买信息,请稍候……
我要买: * 如何购买
** 关于库存、售价、配送费等具体信息建议直接联系店主咨询。
联系店主:购买咨询请联系我  18507486003
本店已缴纳保证金,请放心购买!【如何赔付?】
店主推荐图书:
买家对店铺的满意度评价:查看更多>>
评分
评价内容
评论人
订单图书
《人工智能(内容一致,印次、封面或原价不同,统一售价,随机发货)》内容提要:
本书主要阐述人工智能问题求解方法的一般性原理和基本思想。主要内容有:一般的搜索问题,包括盲目搜索和启发式搜索等;与或图搜索,包括AO·算法和博弈树搜索等;谓词逻辑以及基于归结的定理证明方法;知识表示,包括产生式方法、语义网络、框架等;不确定性推理方法,包括贝叶斯方法、证据理论和确定性方法等;机器学习,包括实例学习、解释学习、决策树学习和神经网络等;**搜索,包括局部搜索方法、模拟退火方法和遗传算法等。
本书可作为计算机专业的本科生或者研究生学习人工智能基础课程的教材或参考书。
《人工智能(内容一致,印次、封面或原价不同,统一售价,随机发货)》图书目录:
第0章 绪论
0.1 什么是人工智能
0.2 图灵测试
0.3 中文屋子问题
0.4 人工智能的研究目标
0.5 人工智能发展简史
0.6 人工智能研究的课题
第1章 搜索问题
1.1 回溯策略
1.2 图搜索策略
1.3 无信息图搜索过程
1.4 启发式图搜索过程
1.5 搜索算法讨论
习题
第2章 与或图搜索问题
2.1 与或图的搜索
2.2 与或图的启发式搜索算法AO
2.3 博弈树的搜索
习题
第3章 谓词逻辑与归结原理
3.1 命题逻辑
3.1.1 命题
3.1.2 命题公式
3.1.3 命题逻辑的意义
3.1.4 命题逻辑的推理规则
3.1.5 命题逻辑的归结方法
3.2 谓词逻辑基础
3.2.1 谓词基本概念
3.2.2 一阶谓词逻辑
3.2.3 谓词演算与推理
3.2.4 谓词知识表示
3.3 谓词逻辑归结原理
3.3.1 归结原理概述
3.3.2 Skolem标准型
3.3.3 子句集
3.3.4 置换与合一
3.3.5 归结式
3.3.6 归结过程
3.3.7 归结过程控制策略
3.4 Herbrand定理
3.4.1 概述
3.4.2 H域
3.4.3 H解释
3.4.4 语义树与Herbrand定理
3.4.5 Herbrand定理
3.4.6 Herbrand定理与归结法的完备性
习题
第4章 知识表示
4.1 概述
4.1.1 知识
4.1.2 知识表示
4.1.3 知识表示观
4.2 产生式表示
4.2.1 事实与规则的表示
4.2.2 产生式系统的结构
4.2.3 产生式系统的推理
4.2.4 产生式表示的特点
4.3 语义网络表示
4.3.1 语义网络的结构
4.3.2 基本的语义关系
4.3.3 语义网络的推理
4.3.4 语义网络表示法的特点
4.4 框架表示
4.4.1 框架结构
4.4.2 框架表示下的推理
4.4.3 框架表示法的特点
4.5 其他表示方法
4.5.1 脚本知识表示方法
4.5.2 过程性知识表示法
4.5.3 直接性知识表示方法
习题
第5章 不确定性推理方法
5.1 概述
5.1.1 不确定性
5.1.2 不确定性推理的基本问题
5.1.3 不确定性推理方法的分类
5.2 概率论基础
5.2.1 随机事件
5.2.2 事件的概率
5.2.3 贝叶斯定理
5.2.4 信任几���
5.3 贝叶斯网络
5.3.1 贝叶斯网络基本概念
5.3.2 贝叶斯网络的推理模式
5.4 主观贝叶斯方法
5.4.1 规则的不确定性
5.4.2 证据的不确定性
5.4.3 推理计算
5.5 确定性方法
5.5.1 规则的不确定性度量
5.5.2 证据的不确定性度量
5.5.3 不确定性的传播与更新
5.5.4 问题
5.6 证据理论(D-Stheory)
5.6.1 基本概念
5.6.2 证据的不确定性
5.6.3 规则的不确定性
5.6.4 推理计算
习题
第6章 机器学习
6.1 概述
6.1.1 机器学习的基本概念
6.1.2 机器学习研究的意义
6.1.3 机器学·习发展历史
6.1.4 机器学习分类
6.2 机器学习的基本系统结构
6.2.1 环境
6.2.2 知识库
6.2.3 学习环节
6.2.4 执行环节
6.3 实例学习
6.3.1 实例学习的基本概念
6.3.2 实例学习方法的分类
6.3.3 变型空间法
6.4 解释学习
6.4.1 解释学习的基本概念
6.4.2 解释学习方法
6.5 决策树学习
6.5.1 概述
6.5.2 1D3算法
6.6 神经网络学习
6.6.1 神经网络基础
6.6.2 前馈型人工神经网络
6.6.3 自组织竞争人工神经网络
6.6.4 人工神经网络的应用
习题
第7章 **搜索
7.1 基本概念
7.1.1 组合优化问题
7.1.2 邻域
7.2 局部搜索算法
7.3 模拟退火算法
7.3.1 固体退火过程
7.3.2 模拟退火算法
7.3.3 参数的确定
7.3.4 应用举例--旅行商问题
7.4 遗传算法
7.4.1 生物进化与遗传算法
7.4.2 遗传算法的实现问题
习题
参考文献