出版日期:2009年01月
ISBN:9787040248630
[十位:7040248638]
页数:278
定价:¥28.70
店铺售价:¥12.00
(为您节省:¥16.70)
店铺库存:1
本
正在处理购买信息,请稍候……
我要买:
本
* 如何购买
联系店主:
13419507575
店主推荐图书:
-
¥10.90
-
90分
优秀
买家很懒,没有填写任何评论!
[2024-09-07 17:47:34]
刘**
上海市
-
100分
满分
确认收货后30天未评价,系统默认好评!
[2024-04-17 10:45:57]
李**
石家庄市
-
100分
满分
确认收货后30天未评价,系统默认好评!
[2024-04-16 20:26:47]
刘**
深圳市
-
100分
满分
确认收货后30天未评价,系统默认好评!
[2024-03-31 16:25:34]
宜宾市
-
100分
满分
确认收货后30天未评价,系统默认好评!
[2024-03-29 11:36:12]
徐*
武汉市
《微分方程数值解法(第四版)》内容提要:
本书是编者在《微分方程数值解法》(第三版)的基础上修订而成的。本次修订的宗旨是加强方法及其应用,考虑到不同院校的需要,仍然保留常微分方程数值解法这一章。为了更方便教学,采取先介绍有限差分法,后介绍GMerkin有限元法,去掉原来的第七章,将离散方程的有关解法与椭圆方程的差分法和有限元法合并,同时增设了一些数值例子,适当删减部分理论内容,突出应用,降低难度。本书包括六章,**章为常微分方程数值解法,第二章至第四章为椭圆、抛物和双曲偏微分方程的有限差分法,第五章、第六章为Galerkin有限元法。
本书是为信息与计算科学专业编写的教材,也可以作为数学与应用数学、力学及某些工程科学专业的教学用书,对于从事科学技术、工程与科学计算的专业人员也有参考价值。
《微分方程数值解法(第四版)》图书目录:
**章 常微分方程初值问题的数值解法
1 引论
1.1 一阶常微分方程初值问题
1.2 Euler法
1.3 线性差分方程
1.4 Gronwall不等式
习题
2 线性多步法
2.1 数值积分法
2.2 待定系数法
2.3 预估-校正算法
2.4 多步法的计算问题
习题
3 相容性、稳定性和误差估计
3.1 局部截断误差和相容性
3.2 稳定性
3.3 收敛性和误差估计
习题
4 单步法和Runge-Kutta(龙格-库塔)法
4.1 Tsylor展开法
4.2 单步法的稳定性和收敛性
4.3 Runge-Kutta法
习题
5 **稳定性和**稳定域
5.1 **稳定性
5.2 **稳定域
5.3 应用例子
习题
6 一阶方程组和刚性问题
6.1 对一阶方程组的推广
6.2 刚性问题
6.3 A稳定性
6.4 数值例子
7 外推法
7.1 多项式外推
7.2 对初值问题的应用
7.3 用外推法估计误差
习题
第二章 椭圆型方程的有限差分法
1 差分逼近的基本概念
2 一维差分格式
2.1 直接差分化
2.2 有限体积法
2.3 待定系数法
2.4 边值条件的处理
习题
3 矩形网的差分格式
3.1 五点差分格式
3.2 边值条件的处理
3.3 极坐标形式的差分格式
习题
4 三角网的差分格式
习题
5 极值定理和敛速估计
5.1 差分方程
5.2 极值定理
5.3 五点格式的敛速估计
习题
6 迭代法
6.1 一般迭代法
6.2 SOR法(逐次超松弛法)
习题
7 交替方向迭代法
习题
8 预处理共轭梯度法
8.1 共轭梯度法
8.2 预处理共轭梯度法
习题
9 数值例子
第三章 抛物型方程的有限差分法
1 *简差分格式
习题
2 稳定性与收敛性
2.1 稳定性概念
2.2 判别稳定性的直接估计法(矩阵法)
2.3 收敛性与敛速估计
习题
3 Fourier方法
习题
4 判别差分格式稳定性的代数准则
习题
5 变系数抛物方程
习题
6 分数步长法
6.1 ADI法
6.2 预-校法
6.3 LOD法
习题
7 数值例子
7.1 一维抛物方程的初边值问题
7.2 二维抛物方程的初边值问题
7.3 含对流项的抛物方程
第四章 双曲型方程的有限差分法
1 波动方程的差分逼近
1.1 波动方程及其特征
1.2 显格式
1.3 稳定性分析
1.4 隐格式
1.5 数值例子
习题
2 一阶线性双曲方程组
2.1 双曲型方程组及其特征
2.2 Cauchy问题、依存域、影响域和决定域
2.3 初边值问题
习题
3 初值问题的差分逼近
3.1 迎风格式
3.2 积分守恒差分格式
3.3 粘性差分格式
3.4 其他差分格式
习题
4 初边值问题和对流占优扩散方程
4.1 初边值问题
4.2 对流占优扩散方程
4.3 数值例子
习题
第五章 边值问题的变分形式与Ritz-Galerkin法
1 二次函数的极值
习题
2 Sobolev空间初步
2.1 弦的平衡
2.2 一维区间上的sobolev空间Hm(I)
2.3 平面域上的Sobolev空间Hm(G)
习题
3 两点边值问题
3.1 极小位能原理
3.2 虚功原理
习题
4 二阶椭圆边值问题
4.1 极小位能原理
4.2 自然边值条件
4.3 虚功原理
习题
5 Ritz-Galerkin方法
习题
6 谱方法
6.1 三角函数逼近
6.2 Fourier谱方法
6.3 拟谱方法(配置法)
第六章 Galerkin有限元法
1 两点边值问题的有限元法
1.1 从Ritz法出发
1.2 从Galerkin法出发
1.3 收敛性和误差估计
习题
2 一维高次元
2.1 一次元(线性元)
2.2 二次元
2.3 三次元
习题
3 解二维问题的矩形元
3.1 Lagrange型公式
3.2 Hermite型公式
习题
4 三角形元
4.1 面积坐标及有关公式
4.2 Lagrange型公式
4.3 Hermite型公式
习题
5 曲边元和等参变换
6 二阶椭圆方程的有限元法
6.1 有限元方程的形成
6.2 矩阵元素的计算
6.3 边值条件的处理
6.4 举例:Poisson方程的有限元法
6.5 数值例子
习题
7 多重网格法
7.1 差分形式的二重网格法
7.2 有限元形式的二重网格法
7.3 多重网格迭代和套迭代技术
8 初边值问题的有限元法
8.1 热传导方程
8.2 波动方程
名词索引
参考文献
《微分方程数值解法(第四版)》编辑推荐与评论:
本书是“普通高等学校信息与计算科学专业系列丛书”之一,全书共分7个章节,主要对微分方程数值解法作了介绍,具体内容包括常微分方程初值问题的数值解法、椭圆型方程的有限差分法、抛物型方程的有限差分法、双曲型方程的有限差分法等。该书可供各大专院校作为教材使用,也可供从事相关工作的人员作为参考用书使用。