网站购物车   | 店铺购物车  
店铺平均得分:99.59 分,再接再厉!!!【查看全部评价】
评分 40分 50分 60分 70分 80分 90分 100分
数量 3 2 1 4 8 45 2488
本店铺共有 3 笔投诉记录,投诉率 0% ,低于平均投诉率 1% 【查看详细】
投诉类型
数量
比例
商品问题
1
33%
发货问题
2
67%
已解决
3
100%
店主称呼:超越梦想书店   联系方式:购买咨询请联系我  18179217950    地址:江西省 九江市 共青城市 共青城市大学城(微信号18179217950)(全国多仓库发货)
促销广告:本店正常都是实际库存,请直接下单。每天16点左右发货。
图书分类
店铺公告
本店主仓是江西九江共青城发货,购买多种书时会也可能分到其他仓多物流发货,主仓发极兔,韵达快递,不指定快递。由于旧书库存软件更新可能不及时导致库存不准确出现缺货情况时,我们会在线通知你退款处理(超48小时未发货,请申请退款),为保证您的利益,下单后请及时关注平台上的“在线交谈”信息或务必加QQ:895814297或电话微信18179217950联系确定发货事宜。非常感谢!
店铺介绍
本书店位于江西省国家赣江新区共青城市高校园区,有数百万册各类新旧教材、教辅,欢迎学生、老师及同行团购!同时大量经营注会、司考、证券、银行从业、公务员、教师资格、会计从业、考研、自考等各类考试用书。本店所有书籍质量上乘、价格实惠,大家可以放心购买。在这里您可以购买到您想要的一切关于学习的资料,若在此没有找到您所需资料,请给店主留言或电联:18179217950(微信),QQ:895814297,定会给您满意的答复。
交易帮助
第一步:选择图书放入购物车。
第二步:结算、填写收货地址。
第三步:担保付款或银行汇款。
第四步:卖家发货。
第五步:确认收货、评价。
作/译者:姚端正 梁家宝 出版社:科学出版社
数学物理方法(第三版)
出版日期:2010年03月
ISBN:9787030264923 [十位:7030264924]
页数:341      
定价:¥39.00
店铺售价:¥6.40 (为您节省:¥32.60
店铺库存:2
注:您当前是在入驻店铺购买,非有路网直接销售。
正在处理购买信息,请稍候……
我要买: * 如何购买
** 关于库存、售价、配送费等具体信息建议直接联系店主咨询。
联系店主:购买咨询请联系我  18179217950
本店已缴纳保证金,请放心购买!【如何赔付?】
店主推荐图书:
买家对店铺的满意度评价:查看更多>>
评分
评价内容
评论人
订单图书
《数学物理方法(第三版)》内容提要:
本书是普通高等教育“十一五”**级规划教材,也是**精品课程
配套教材,由作者在总结多年教学经验的基础上编写而成。
本书本着去粗取精、更新拓宽的思想科学地组织内容。全书突出物理
背景、前景和物理意义,密切结合物理实例,特别注重与后续课的联系,
并增加了传统教材中没有的非线性方程和小波变换等内容。全书分为复变
函数论(**篇)、数理方程(第二篇)和特殊函数第三篇)三个部分,在每章
后都有小结,每小节后都附有习题,以加深和扩大知识的深度和广度,培
养学生分析问题、解决问题的能力和创新能力。
本书可作为高等院校物理专业本科生的教材,也可供相关专业的研究
生、教师和科技人员参考使用。
**篇 复变函数论
**章 解析函数
1.1 复数及其运算
习题1.1
1.2 复变函数
习题1.2
1.3 微商及解析函数
习题1.3
1.4 初等解析函数
习题1.4
1.5 解析函数的几何性质
习题1.5
本章小结
第二章 解析函数积分
2.1 复变函数的积分
习题2.1
2.2 柯西定理
习题2.2
《数学物理方法(第三版)》图书目录:
本书是普通高等教育“十一五”**级规划教材,也是**精品课程
配套教材,由作者在总结多年教学经验的基础上编写而成。
本书本着去粗取精、更新拓宽的思想科学地组织内容。全书突出物理
背景、前景和物理意义,密切结合物理实例,特别注重与后续课的联系,
并增加了传统教材中没有的非线性方程和小波变换等内容。全书分为复变
函数论(**篇)、数理方程(第二篇)和特殊函数第三篇)三个部分,在每章
后都有小结,每小节后都附有习题,以加深和扩大知识的深度和广度,培
��学生分析问题、解决问题的能力和创新能力。
本书可作为高等院校物理专业本科生的教材,也可供相关专业的研究
生、教师和科技人员参考使用。
**篇 复变函数论
**章 解析函数
1.1 复数及其运算
习题1.1
1.2 复变函数
习题1.2
1.3 微商及解析函数
习题1.3
1.4 初等解析函数
习题1.4
1.5 解析函数的几何性质
习题1.5
本章小结
第二章 解析函数积分
2.1 复变函数的积分
习题2.1
2.2 柯西定理
习题2.2
2.3 柯西积分公式
习题2.3
本章小结
第三章 复变函数级数
3.1 复级数
3.2 幂级数
习题3.2
3.3 泰勒级数
习题3.3
3.4 洛朗级数
习题3.4
3.5 单值函数的孤立奇点
习题3.5
本章小结
第四章 解析延拓 г函数
4.1 解析延拓
习题4.1
4.2 厂函数
习题4.2
4.3 B函数
习题4.3
本章小结
第五章 留数理论
5.1 留数定理
习题5.1
5.2 利用留数理论计算实积分
习题5.2
5.3 物理问题中的几个积分
习题5.3
5.4 多值函数的积分
习题5.4
本章小结
第二篇 数学物理方程
第六章 定解问题
6.1 引言
6.2 三类数理方程的导出
习题6.2
6.3 定解条件
习题6.3
本章小结
第七章 行波法
7.1 无界弦的自由振动达朗贝尔公式
习题7.1
7.2 无界弦的强迫振动
习题7.2
7.3 三维无界空间的自由振动泊松公式
习题7.3
7.4 三维无界空间的受迫振动推迟势
本章小结
第八章 分离变量法
8.1 有界弦的自由振动
习题8.1
8.2 非齐次方程纯强迫振动
习题8.2
8.3 非齐次边界条件的处理
习题8.3
8.4 正交曲线坐标系
8.5 正交曲线坐标系中的分离变量
习题8.5
本章小结
第九章 积分变换法
9.1 傅里叶变换
习题9.1
9.2 傅里叶变换法
习题9.2
9.3 拉普拉斯变换
习题9.3
9.4 拉普拉斯变换法
习题9.4
9.5 小波变换导引
本章小结
第十章 格林函数法
10.1 δ函数
习题10.1
10.2 边值问题的格林函数法
习题10.2
10.3 稳恒问题的格林函数
习题10.3
10.4 电像法与狄氏格林函数
习题10.4
10.5 含时问题的格林函数法
习题10.5
本章小结
第十一章 变分法
11.1 泛函和泛函的极值
习题11.1
11.2 用变分法解数理方程
习题11.2
本章小结
第十二章 非线性方程
12,1非线性方程的某些初等解法
习题12.1
12.2 孤波和孤子
习题12.2
12.3 解析近似解和正则摄动法
习题12.3
本章小结,
第十三章 积分方程
13.1 积分方程的几种解法
习题13.1
13.2 施密特—希尔伯特理论
习题13.2
13.3 维纳—霍普夫方法
习题13.3
本章小结
第三篇 特殊函数
第十四章 勒让德多项式
14.1 勒让德多项式
习题14.1
14.2 勒让德多项式的性质
习题14.2
14.3 球函数
习题14.3
本章小结
第十五章 贝塞尔函数
15.1 贝塞尔函数
习题15.1
15.2 贝塞尔函数的性质
习题15.2
15.3 其他柱函数
习题15.3
本章小结
第十六章 特殊函数的一般理论
16.1 施图姆—刘维尔本征值问题
习题16.1
16.2 高斯方程和库默尔方程
本篇主要特殊函数性质小结
习题参考答案
参考文献
附录
一、傅里叶变换简表
二、拉普拉斯变换简表
《数学物理方法(第三版)》文章节选:
本书是普通高等教育“十一五”**级规划教材,也是**精品课程
配套教材,由作者在总结多年教学经验的基础上编写而成。
本书本着去粗取精、更新拓宽的思想科学地组织内容。全书突出物理
背景、前景和物理意义,密切结合物理实例,特别注重与后续课的联系,
并增加了传统教材中没有的非线性方程和小波变换等内容。全书分为复变
函数论(**篇)、数理方程(第二篇)和特殊函数第三篇)三个部分,在每章
后都有小结,每小节后都附有习题,以加深和扩大知识的深度和广度,培
养学生分析问题、解决问题的能力和创新能力。
本书可作为高等院校物理专业本科生的教材,也可供相关专业的研究
生、教师和科技人员参考使用。
**篇 复变函数论
**章 解析函数
1.1 复数及其运算
习题1.1
1.2 复变函数
习题1.2
1.3 微商及解析函数
习题1.3
1.4 初等解析函数
习题1.4
1.5 解析函数的几何性质
习题1.5
本章小结
第二章 解析函数积分
2.1 复变函数的积分
习题2.1
2.2 柯西定理
习题2.2
2.3 柯西积分公式
习题2.3
本章小结
第三章 复变函数级数
3.1 复级数
3.2 幂级数
习题3.2
3.3 泰勒级数
习题3.3
3.4 洛朗级数
习题3.4
3.5 单值函数的孤立奇点
习题3.5
本章小结
第四章 解析延拓 г函数
4.1 解析延拓
习题4.1
4.2 厂函数
习题4.2
4.3 B函数
习题4.3
本章小结
第五章 留数理论
5.1 留数定理
习题5.1
5.2 利用留数理论计算实积分
习题5.2
5.3 物理问题中的几个积分
习题5.3
5.4 多值函数的积分
习题5.4
本章小结
第二篇 数学物理方程
第六章 定解问题
6.1 引言
6.2 三类数理方程的导出
习题6.2
6.3 定解条件
习题6.3
本章小结
第七章 行波法
7.1 无界弦的自由振动达朗贝尔公式
习题7.1
7.2 无界弦的强迫振动
习题7.2
7.3 三维无界空间的自由振动泊松公式
习题7.3
7.4 三维无界空间的受迫振动推迟势
本章小结
第八章 分离变量法
8.1 有界弦的自由振动
习题8.1
8.2 非齐次方程纯强迫振动
习题8.2
8.3 非齐次边界条件的处理
习题8.3
8.4 正交曲线坐标系
8.5 正交曲线坐标系中的分离变量
习题8.5
本章小结
第九章 积分变换法
9.1 傅里叶变换
习题9.1
9.2 傅里叶变换法
习题9.2
9.3 拉普拉斯变换
习题9.3
9.4 拉普拉斯变换法
习题9.4
9.5 小波变换导引
本章小结
第十章 格林函数法
10.1 δ函数
习题10.1
10.2 边值问题的格林函数法
习题10.2
10.3 稳恒问题的格林函数
习题10.3
10.4 电像法与狄氏格林函数
习题10.4
10.5 含时问题的格林函数法
习题10.5
本章小结
第十一章 变分法
11.1 泛函和泛函的极值
习题11.1
11.2 用变分法解数理方程
习题11.2
本章小结
第十二章 非线性方程
12,1非线性方程的某些初等解法
习题12.1
12.2 孤波和孤子
习题12.2
12.3 解析近似解和正则摄动法
习题12.3
本章小结,
第十三章 积分方程
13.1 积分方程的几种解法
习题13.1
13.2 施密特—希尔伯特理论
习题13.2
13.3 维纳—霍普夫方法
习题13.3
本章小结
第三篇 特殊函数
第十四章 勒让德多项式
14.1 勒让德多项式
习题14.1
14.2 勒让德多项式的性质
习题14.2
14.3 球函数
习题14.3
本章小结
第十五章 贝塞尔函数
15.1 贝塞尔函数
习题15.1
15.2 贝塞尔函数的性质
习题15.2
15.3 其他柱函数
习题15.3
本章小结
第十六章 特殊函数的一般理论
16.1 施图姆—刘维尔本征值问题
习题16.1
16.2 高斯方程和库默尔方程
本篇主要特殊函数性质小结
习题参考答案
参考文献
附录
一、傅里叶变换简表
二、拉普拉斯变换简表
《数学物理方法(第三版)》编辑推荐与评论:
本书是普通高等教育“十一五”**级规划教材,也是**精品课程
配套教材,由作者在总结多年教学经验的基础上编写而成。
本书本着去粗取精、更新拓宽的思想科学地组织内容。全书突出物理
背景、前景和物理意义,密切结合物理实例,特别注重与后续课的联系,
并增加了传统教材中没有的非线性方程和小波变换等内容。全书分为复变
函数论(**篇)、数理方程(第二篇)和特殊函数第三篇)三个部分,在每章
后都有小结,每小节后都附有习题,以加深和扩大知识的深度和广度,培
养学生分析问题、解决问题的能力和创新能力。
本书可作为高等院校物理专业本科生的教材,也可供相关专业的研究
生、教师和科技人员参考使用。
**篇 复变函数论
**章 解析函数
1.1 复数及其运算
习题1.1
1.2 复变函数
习题1.2
1.3 微商及解析函数
习题1.3
1.4 初等解析函数
习题1.4
1.5 解析函数的几何性质
习题1.5
本章小结
第二章 解析函数积分
2.1 复变函数的积分
习题2.1
2.2 柯西定理
习题2.2
2.3 柯西积分公式
习题2.3
本章小结
第三章 复变函数级数
3.1 复级数
3.2 幂级数
习题3.2
3.3 泰勒级数
习题3.3
3.4 洛朗级数
习题3.4
3.5 单值函数的孤立奇点
习题3.5
本章小结
第四章 解析延拓 г函数
4.1 解析延拓
习题4.1
4.2 厂函数
习题4.2
4.3 B函数
习题4.3
本章小结
第五章 留数理论
5.1 留数定理
习题5.1
5.2 利用留数理论计算实积分
习题5.2
5.3 物理问题中的几个积分
习题5.3
5.4 多值函数的积分
习题5.4
本章小结
第二篇 数学物理方程
第六章 定解问题
6.1 引言
6.2 三类数理方程的导出
习题6.2
6.3 定解条件
习题6.3
本章小结
第七章 行波法
7.1 无界弦的自由振动达朗贝尔公式
习题7.1
7.2 无界弦的强迫振动
习题7.2
7.3 三维无界空间的自由振动泊松公式
习题7.3
7.4 三维无界空间的受迫振动推迟势
本章小结
第八章 分离变量法
8.1 有界弦的自由振动
习题8.1
8.2 非齐次方程纯强迫振动
习题8.2
8.3 非齐次边界条件的处理
习题8.3
8.4 正交曲线坐标系
8.5 正交曲线坐标系中的分离变量
习题8.5
本章小结
第九章 积分变换法
9.1 傅里叶变换
习题9.1
9.2 傅里叶变换法
习题9.2
9.3 拉普拉斯变换
习题9.3
9.4 拉普拉斯变换法
习题9.4
9.5 小波变换导引
本章小结
第十章 格林函数法
10.1 δ函数
习题10.1
10.2 边值问题的格林函数法
习题10.2
10.3 稳恒问题的格林函数
习题10.3
10.4 电像法与狄氏格林函数
习题10.4
10.5 含时问题的格林函数法
习题10.5
本章小结
第十一章 变分法
11.1 泛函和泛函的极值
习题11.1
11.2 用变分法解数理方程
习题11.2
本章小结
第十二章 非线性方程
12,1非线性方程的某些初等解法
习题12.1
12.2 孤波和孤子
习题12.2
12.3 解析近似解和正则摄动法
习题12.3
本章小结,
第十三章 积分方程
13.1 积分方程的几种解法
习题13.1
13.2 施密特—希尔伯特理论
习题13.2
13.3 维纳—霍普夫方法
习题13.3
本章小结
第三篇 特殊函数
第十四章 勒让德多项式
14.1 勒让德多项式
习题14.1
14.2 勒让德多项式的性质
习题14.2
14.3 球函数
习题14.3
本章小结
第十五章 贝塞尔函数
15.1 贝塞尔函数
习题15.1
15.2 贝塞尔函数的性质
习题15.2
15.3 其他柱函数
习题15.3
本章小结
第十六章 特殊函数的一般理论
16.1 施图姆—刘维尔本征值问题
习题16.1
16.2 高斯方程和库默尔方程
本篇主要特殊函数性质小结
习题参考答案
参考文献
附录
一、傅里叶变换简表
二、拉普拉斯变换简表
《数学物理方法(第三版)》作者介绍:
本书是普通高等教育“十一五”**级规划教材,也是**精品课程
配套教材,由作者在总结多年教学经验的基础上编写而成。
本书本着去粗取精、更新拓宽的思想科学地组织内容。全书突出物理
背景、前景和物理意义,密切结合物理实例,特别注重与后续课的联系,
并增加了传统教材中没有的非线性方程和小波变换等内容。全书分为复变
函数论(**篇)、数理方程(第二篇)和特殊函数第三篇)三个部分,在每章
后都有小结,每小节后都附有习题,以加深和扩大知识的深度和广度,培
养学生分析问题、解决问题的能力和创新能力。
本书可作为高等院校物理专业本科生的教材,也可供相关专业的研究
生、教师和科技人员参考使用。
**篇 复变函数论
**章 解析函数
1.1 复数及其运算
习题1.1
1.2 复变函数
习题1.2
1.3 微商及解析函数
习题1.3
1.4 初等解析函数
习题1.4
1.5 解析函数的几何性质
习题1.5
本章小结
第二章 解析函数积分
2.1 复变函数的积分
习题2.1
2.2 柯西定理
习题2.2
2.3 柯西积分公式
习题2.3
本章小结
第三章 复变函数级数
3.1 复级数
3.2 幂级数
习题3.2
3.3 泰勒级数
习题3.3
3.4 洛朗级数
习题3.4
3.5 单值函数的孤立奇点
习题3.5
本章小结
第四章 解析延拓 г函数
4.1 解析延拓
习题4.1
4.2 厂函数
习题4.2
4.3 B函数
习题4.3
本章小结
第五章 留数理论
5.1 留数定理
习题5.1
5.2 利用留数理论计算实积分
习题5.2
5.3 物理问题中的几个积分
习题5.3
5.4 多值函数的积分
习题5.4
本章小结
第二篇 数学物理方程
第六章 定解问题
6.1 引言
6.2 三类数理方程的导出
习题6.2
6.3 定解条件
习题6.3
本章小结
第七章 行波法
7.1 无界弦的自由振动达朗贝尔公式
习题7.1
7.2 无界弦的强迫振动
习题7.2
7.3 三维无界空间的自由振动泊松公式
习题7.3
7.4 三维无界空间的受迫振动推迟势
本章小结
第八章 分离变量法
8.1 有界弦的自由振动
习题8.1
8.2 非齐次方程纯强迫振动
习题8.2
8.3 非齐次边界条件的处理
习题8.3
8.4 正交曲线坐标系
8.5 正交曲线坐标系中的分离变量
习题8.5
本章小结
第九章 积分变换法
9.1 傅里叶变换
习题9.1
9.2 傅里叶变换法
习题9.2
9.3 拉普拉斯变换
习题9.3
9.4 拉普拉斯变换法
习题9.4
9.5 小波变换导引
本章小结
第十章 格林函数法
10.1 δ函数
习题10.1
10.2 边值问题的格林函数法
习题10.2
10.3 稳恒问题的格林函数
习题10.3
10.4 电像法与狄氏格林函数
习题10.4
10.5 含时问题的格林函数法
习题10.5
本章小结
第十一章 变分法
11.1 泛函和泛函的极值
习题11.1
11.2 用变分法解数理方程
习题11.2
本章小结
第十二章 非线性方程
12,1非线性方程的某些初等解法
习题12.1
12.2 孤波和孤子
习题12.2
12.3 解析近似解和正则摄动法
习题12.3
本章小结,
第十三章 积分方程
13.1 积分方程的几种解法
习题13.1
13.2 施密特—希尔伯特理论
习题13.2
13.3 维纳—霍普夫方法
习题13.3
本章小结
第三篇 特殊函数
第十四章 勒让德多项式
14.1 勒让德多项式
习题14.1
14.2 勒让德多项式的性质
习题14.2
14.3 球函数
习题14.3
本章小结
第十五章 贝塞尔函数
15.1 贝塞尔函数
习题15.1
15.2 贝塞尔函数的性质
习题15.2
15.3 其他柱函数
习题15.3
本章小结
第十六章 特殊函数的一般理论
16.1 施图姆—刘维尔本征值问题
习题16.1
16.2 高斯方程和库默尔方程
本篇主要特殊函数性质小结
习题参考答案
参考文献
附录
一、傅里叶变换简表
二、拉普拉斯变换简表