您好,欢迎光临有路网!
神经计算原理(英文版)
QQ咨询:
有路璐璐:

神经计算原理(英文版)

  • 作者:(美)哈姆
  • 出版社:机械工业出版社
  • ISBN:9787111124092
  • 出版日期:2003年07月01日
  • 页数:642
  • 定价:¥69.00
  • 分享领佣金
    手机购买
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    内容提要
    本书是一部**的教材,着重讲述人工神经网络基本原理以及如何运用各种神经计算技术来解决科学和工程领域中的现实问题:模式识别、*优化、事件分类、非线性系统的控制和识别以及统计分析等。算法——大多数训练算法都用上下框线框出,便于读者查找 MATLAB函数——一些训练算法有一个附带的MATLAB函数实现(在文中用黑体字显示)。代码部分相对简短,仅用几分钟就可以输入MATLAB MATLAB Toolbox——书中大量使用MATLAB的Neural Network Toolbox来举例说明某些神经计算概念 Web站点——登录本书的Web站点http://www.mhhe.com/engcs/electrical/ham可获取*新、*全面的信息示例——在大多数章节中都给出了详尽的示例,阐释重要的神经计算概念 习题集——每章*后都给出大量应用神经计算技术的习题。一些习题需要使用MATLAB和MATLAB的Neural Network Toolbox。在某些情况下,还提供了MATLAB函数代码附录——附录A全面介绍了神经计算的数学基础。
    目录
    About the Authors
    Preface
    Acknowledgments
    List of Important Symbols and Operators
    List of Important Abbreviations
    PARTI Fundamental Neurocomputing Concepts and
    Selected Neural Network Architectures and
    Learning Rules
    1 Introduction to Neurocomputing
    1.1 What Is Neurocomputing?
    1.2 Historical Notes
    1.3 Neurocomputing and Neuroscience
    1.4 Classification of Neural Networks
    1.5 Guide to the Book
    References
    2 Fundamental Neurocomputing Concepts
    2.1 Introduction
    2.2 Basic Models of Artificial Neurons
    2.3 Basic Activation Functions
    2.4 Hopfield Model of the Artificial Neuron
    2.5 Adaline and Madaline
    2.6 Simple Perceptron
    2.7 Feedforward Multilayer Perceptron
    2.8 Overview of Basic Learning Rules for a Single Neuron
    2.9 Data Preprocessing
    Problems
    References
    3 Mapping Networks
    3.1 Introduction
    3.2 Associative Memory Networks
    3.3 Backpropagation Learning Algorithms
    3.4 Accelerated Learning Backpropagation Algorithms
    3.5 Counterpropagation
    3.6 Radial Basis Function Neural Networks
    Problems
    References
    4 Self-Organizing Networks
    4.1 Introduction
    4.2 Kohonen Self-Organizing Map
    4.3 Learning Vector Quantization
    4.4 Adaptive Resonance Theory (ART) Neural Networks
    Problems
    References
    5 Recurrent Networks and Temporal Feedforward Networks
    5.1 Introduction
    5.2 Overview of Recurrent Neural Networks
    5.3 Hopfield Associative Memory
    5.4 Simulated Annealing
    5.5 Boltzmann Machine
    5.6 Overview of Temporal Feedforward Networks
    5.7 Simple Recurrent Network
    5.8 Time-Delay Neural Networks
    5.9 Distributed Time-Lagged Feedforward Neural
    Networks
    Problems
    References
    PART II Applications of Neurocomputing
    6 Neural Networks for Optimization Problems
    6.1 Introduction
    6.2 Neural Networks for Linear Programming Problems
    6.3 Neural Networks for Quadratic Programming
    Problems
    6.4 Neural Networks for Nonlinear Continuous
    Constrained Optimization Problems
    Problems
    References
    Solving Matrix Algebra Problems with Neural Networks
    7.1 Introduction
    7.2 Inverse and Pseudoinverse of a Matrix
    7.3 LU Decomposition
    7.4 QR Factorization
    7.5 Schur Decomposition
    7.6 Spectral Factorization - Eigenvalue Decomposition
    (EVD) (Symmetric Eigenvalue Problem)
    7.7 Neural Network Approach for the Symmetric
    Eigenvalue Problem
    7.8 Singular Value Decomposition
    7.9 A Neurocomputing Approach for Solving the
    Algebraic Lyapunov Equation
    7.10 A Neurocomputing Approach for Solving the
    Algebraic Riccati Equation
    Problems
    References
    8 Solution of Linear Algebraic Equations Using Neural
    Networks
    8.1 Introduction
    8.2 Systems of Simultaneous Linear Algebraic Equations
    8.3 Least-Squares Solution of Systems of Linear
    Equations
    8.4 A Least-Squares Neurocomputing Approach for
    Solving Systems of Linear Equations
    8.5 Conjugate Gradient Learning Rule for Solving
    Systems of Linear Equations
    8.6 A Generalized Robust Approach for Solving
    Systems of Linear Equations Corrupted with Noise
    8.7 Regularization Methods for Ill-Posed Problems with
    Ill-Determined Numerical Rank
    8.8 Matrix Splittings for Iterative Discrete-Time
    Methods for Solving Linear Equations
    8.9 Total Least-Squares problem
    8.10 An L-Norm (Minimax) Neural Network for
    Solving Linear Equations
    8.11 An L1-Norm (Least-Absolute-Deviations) Neural
    Network for Solving Linear Equations
    Problems
    References
    9 Statistical Methods Using Neural Networks
    9.1 Introduction
    9.2 Principal-Component Analysis
    9.3 Learning Algorithms for Neural Network Adaptive
    Estimation of Principal Components
    9.4 Principal-Component Regression
    9.5 Partial Least-Squares Regression
    9.6 A Neural Network Approach for Partial
    Least-Squares Regression
    9.7 Robust PLSR: A Neural Network Approach
    Problems
    References
    10 Identification, Control, and Estimation Using Neural Networks
    10.1 Introduction
    10.2 Linear System Representation
    10.3 Autoregressive Moving Average Models
    10.4 Identification of Linear Systems with ARMA Models
    10.5 Parametric System Identification of Linear Systems Using PLSNET
    10.6 Nonlinear System Representation
    10.7 Identification and Control of Nonlinear Dynamical Systems
    10.8 Independent-Component Analysis: Blind Separation of Unknown Source Signals
    10.9 Spectrum Estimation of Sinusoids in Additive Noise
    10.10 Other Case Studies
    Problems
    References
    App A Mathematical Foundation for Neurocomputing
    A.1 Introduction
    A.2 Linear Algebra
    A.3 Principles of Multivariable Analysis
    A.4 Lyapunov's Direct Method
    A.5 Unconstrained Optimization Methods
    A.6 Constrained Nonlinear Programming
    A.7 Random Variables and Stochastic Processes
    A.8 Fuzzy Set Theory
    A.9 Selected Trigonometric Identities
    References
    Name Index
    Subject Index
    编辑推荐语
    本书是一部**的教材,着重讲述人工神经网络基本原理以及如何运用各种神经计算技术来解决科学和工程领域中的现实问题:模式识别、*优化、事件分类、非线性系统的控制和识别以及统计分析等。算法——大多数训练算法都用上下框线框出,便于读者查找 MATLAB函数——一些训练算法有一个附带的MATLAB函数实现(在文中用黑体字显示)。

    与描述相符

    100

    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外