您好,欢迎光临有路网!
数据采集与处理:基于Python(新编21世纪数据科学与大数据技术系列教材)
QQ咨询:
有路璐璐:

数据采集与处理:基于Python(新编21世纪数据科学与大数据技术系列教材)

  • 出版日期:2024年04月01日
  • 页数:288
  • 定价:¥39.00
有路价
¥15.60 [4.0折] VIP价:¥14.80
团购价
¥12.50 [3.2折] (需满50本或500元,可混批)
配送
优惠活动
15600 积分,每 10 点积分可用于支付 0.01 元。 [详细介绍]
真实库存,72小时内发货!
图书回收
¥2.20
微信扫码卖书
赚钱赚书费
有路网官方和入驻商家当前都缺货咯!如您急需,可以【登记求购】
分享领佣金
手机购买
城市
店铺名称
店主联系方式
店铺售价
库存
店铺得分/总交易量
发布时间
操作
暂无入驻店铺出售信息!

新书比价

网站名称
书名
售价
优惠
操作
暂无新书出售信息!

图书详情

内容提要
本书的主旨是介绍如何结合Python3语言进行各类结构化和非结构化数据的采集、预处理和存储,涉及统计概率、数据格式与编码、网页开发、自然语言处理、数据科学等不同领域的内容。全书共分为11章,包括数据科学概述、Python基础、统计与概率基础、文件读写与操作、数据可视化、网络数据爬取等多个主题。内容覆盖本地文件、网页数据、大数据访问等编程中的主要知识和技术,在重视理论基础的前提下,从实用性和丰富度出发,结合实例演示了数据采集、处理与存储的核心流程。本书适合高等院校计算机、数据科学与大数据技术、软件工程、统计等相关专业的师生以及Python语言初学者、网络爬虫技术爱好者、数据分析从业人士阅读。
文章节选
数据可视化是艺术与技术的结合。它将各种数据用图形化的方式呈现出来,为用户展示已知数据之间的规律、趋势和相关关系,帮助用户认识数据,发现这些数据反映的实质。因此,数据可视化是数据探索性分析的重要组成部分,有助于用户发现数据之间的分布特征、相互关系和总体趋势,为进一步的数据处理和分析提供直观参考。
比如,使用pyecharts可以让***轻松地实现大数据的可视化。例如,用pyecharts的v 1.x版本绘制四个商家衬衫、羊毛衫、雪纺衫、裤子、高跟鞋、袜子的**的柱状图,相关代码及结果如下:
import random
import pyecharts.options as opts
from pyecharts.charts import Bar
x_vals = ['衬衫', '羊毛衫', '雪纺衫', '裤子', '高跟鞋', '袜子']
bar = (
Bar()
.add_xaxis(x_vals)
.add_yaxis('商家A', [random.randint(10, 100) for_in range(6)])
.add_yaxis('商家B', [random.randint(10, 100) for_in range(6)])
.add_yaxis('商家C', [random.randint(10, 100) for_in range(6)])
.add_yaxis('商家D', [random.randint(10, 100) for_in range(6)])
.set_series_opts(label_opts=opts.LabelOpts(is_show=True, font_size=14), markline_opts=opts. MarkLineOpts(data=[opts.MarkLineItem(y=40, name="达标线=40")]))
.set_global_opts(title_opts=opts.TitleOpts(title='柱状图示例-**', subtitle='四个商家'), xaxis_opts=opts.AxisOpts(name='商品'),yaxis_opts=opts.AxisOpts(name='单位:件')))
bar.render('柱状图.html')
查看全部>>
目录
**章 概 述 **节 数据科学概述 第二节 数据采集概述 第三节 数据存储概述 第四节 Python相关数据科学工具 思考与练习 延伸阅读材料 第二章 Python基础 **节 Python简介 第二节 Python基本语法与命令 第三节 运算符、表达式与内置对象 第四节 函数 第五节 异常及其处理 思考与练习 延伸阅读材料 第三章 numpy与pandas基础 **节 numpy基础 第二节 pandas基础 思考与练习 延伸阅读材料 第四章 数据可视化 **节 数据可视化概述 第二节 matplotlib绘图工具 第三节 其他数据可视化工具 思考与练习 延伸阅读材料 第五章 文件读写与操作 **节 文件读写基本操作 第二节 CSV文件读写 第三节 XML文件读写 第四节 JSON文件读写 第五节 HDF文件读写 第六节 Office文件读写 第七节 PDF文件读写 第八节 图像文件读写 思考与练习 延伸阅读材料 第六章 统计与概率基础 **节 统计基础 第二节 概率与分布 思考与练习 延伸阅读材料 第七章 数据清洗与预处理 **节 数据清洗 第二节 数据整合 第三节 数据变换 第四节 聚合与分组统计 第五节 数据归约 思考与练习 延伸阅读材料 第八章 网络数据采集 **节 爬虫的相关概念与知识 第二节 HTML与JavaScript基础 第三节 静态网页内容爬取与解析 第四节 动态网页内容爬取 第五节 爬虫框架Scrapy与应用 思考与练习 延伸阅读材料 第九章 关系型数据库连接与访问 **节 关系型数据库概述 第二节 SQLite数据库连接与访问 第三节 MySQL数据库连接与访问 思考与练习 延伸阅读材料 第十章 大数据存储与访问技术 **节 大数据技术 第二节 非关系型数据库简介 第三节 MongoDB数据库连接与访问 思考与练习 延伸阅读材料 第十一章 数据集成与ETL技术 **节 数据集成 第二节 ETL相关技术与工具 思考与练习 延伸阅读材料 参考文献
暂无商品评价信息
北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外