深度学习是计算机科学的一个重要分支,是一种以人工神经网络为架构,对数据进行表征学习的算法的总称。深度学习是传统机器学习算法的发展和衍生,相关内容涉及代数、统计学、优化理论、矩阵计算等多个领域。《深度学习理论与实践》是深度学习的基础入门级教材,在内容上尽可能覆盖深度学习算法相关基础知识。全书共11章,大致可分为三大部分:**部分(第1~3章)主要介绍机器学习的基础知识和一些传统算法;第二部分(第4~8章)主要介绍人工神经网络等的相关理论、优化算法和各类经典神经网络模型;第三部分(第9~11章)为进阶知识,主要介绍非监督学习和强化学习的相关算法。 在学习《深度学习理论与实践》的过程中,读者不仅要深入理解相关算法理论,更要多思多练。读者在阅读各章节内容后,可基于各章习题巩固知识,并将理论与实践结合,基于torch、tensorflow等深度学习平台在实际任务中演练所学理论知识和技能。本书可作为高等院校计算机或电子信息相关专业的本科生或研究生教材。