您好,欢迎光临有路网!
数据挖掘导论(高等院校计算机教育系列教材)
QQ咨询:
有路璐璐:

数据挖掘导论(高等院校计算机教育系列教材)

  • 作者:戴红
  • 出版社:清华大学出版社
  • ISBN:9787302381044
  • 出版日期:2015年01月01日
  • 页数:207
  • 定价:¥28.00
  • 猜你也喜欢

    分享领佣金
    手机购买
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    内容提要
    本书为数据挖掘入门级教材,共分8章,主要内容分为三个专题:技术,数据和评估。技术专题包括决策树技术、K-means关联分析技术、神经网络技术、回归分析技术
    、贝叶斯分析、凝聚类、概念分层聚类、混合模型类技术的EM算法、时间序列分析和基于Web的数据挖掘等常用的机器学习方法和统计分类正确和混淆矩阵,并结合检验集置信区间评估有指导学习模型,使用=无指导聚类技术评估有估属性,使用Lift和假设验比较两个有指导学习模型,使用MSExcel2010和经典的假设检验模型评估属性,使用簇质量度量方法和有指导学习技术评估无指导聚类模型。
    本书秉承教材风格,强调广度讲解。注重成熟模型和开源工具的使用,以提高学习的应用能力为目标:注重结合实例和经验,加强基本概念各实验作业巩固和检验所学内容:使用词汇表附录,解释和数据规范数据挖掘学科专业术语:使用适合教学的简单易用的Weka和通用的MSExcel软件工具实施数据挖掘验证和体验数据挖掘的精妙。
    目录
    第1章认识数据挖掘.
    1.1数据挖掘的定义
    1.2机器学习
    1.2.1 概念学习
    1.2.2归纳学习
    1.2.3有指导的学习
    1.2.4无指导的聚类
    1.3 数据查询
    1.4专家系统.
    1.5数据挖掘的过程
    1.5.1准备数据
    1.5.2挖掘数据
    1.5.3解释和评估数据
    1.5.4模型应用
    1.6数据挖掘的作用
    1.6.1分类
    1.6.2估计
    1.6.3预测
    1.6.4无指导聚类
    1.6.5关联关系分析
    1.7数据挖掘技术
    1.7.1神经网络
    1.7.2回归分析
    1.7.3关联分析
    1.7.4聚类技术
    1.8数据挖掘的应用
    1.8.1应用领域
    1.8.2成功案例
    1.9 Weka数据挖掘软件
    1.9.1 Weka简介
    1.9.2使用Weka建立决策树
    模型
    1.9.3使用Weka进行聚类
    1.9.4使用Weka进行关联分
    本章小结
    习题
    第2章基本数据挖掘技术
    2.1 决策树
    2.1.1决策树算法的一般过程
    2.1.2决策树算法的关键技术
    2.1.3决策树规则
    2.1.4其他决策树算法
    2.1.5决策树小结
    2.2关联规则
    2.2.1关联规则概述
    2.2.2关联分析
    2.2.3关联规Nd,结
    2.3聚类分析技术
    2.3.1 K.means算法
    2.3.2 K.means算法小结
    2.4数据挖掘技术的选择
    本章小结
    习题
    第3章数据库中的知识发现
    3.1 知识发现的基本过程
    3.1.1 KDD过程模型
    3.1.2知识发现软件
    3.1_3 KDD过程的参与者
    3.2 KDD过程模型的应用
    3.2.1步骤l:商业理解l
    3.2.2步骤2:数据理解l
    3.2.3步骤3:数据准备
    3.2.4步骤4:建模
    3.2.5评估
    3.2.6部署和采取行动
    3.3实验:KDD案例
    本章小结
    习题
    第4章数据仓库
    4.1数据库与数据仓库一
    4.1.1数据(库)模型
    4.1.2规范化与反向规范化一
    4.2设计数据仓库
    4.2.1 数据抽取、清洗、变换和
    加载·
    4.2.2数据仓库模型
    4.2.3数据集市
    4.2.4决策支持系统一
    4.3联机分析处理
    4.3,1概述
    4.3.2实验:使用OLAP辅助
    驾驶员行为分析
    4.4使用Excel数据透视表和数据
    透视图分析数据
    4.4.1 创建简单数据透视表和
    透视图
    4|412创建多维透视表和透视图
    本章小结
    习题
    第5章评估技术
    5.1数据挖掘评估概述……
    第6章神经网络技术
    第7章统计技术
    第8章时间序列和基于Web的数据挖掘
    附录A词汇表
    附录B数据挖掘数据集
    参考文献

    与描述相符

    100

    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外