本书为数据挖掘入门级教材,共分8章,主要内容分为三个专题:技术,数据和评估。技术专题包括决策树技术、K-means关联分析技术、神经网络技术、回归分析技术
、贝叶斯分析、凝聚类、概念分层聚类、混合模型类技术的EM算法、时间序列分析和基于Web的数据挖掘等常用的机器学习方法和统计分类正确和混淆矩阵,并结合检验集置信区间评估有指导学习模型,使用=无指导聚类技术评估有估属性,使用Lift和假设验比较两个有指导学习模型,使用MSExcel2010和经典的假设检验模型评估属性,使用簇质量度量方法和有指导学习技术评估无指导聚类模型。
本书秉承教材风格,强调广度讲解。注重成熟���型和开源工具的使用,以提高学习的应用能力为目标:注重结合实例和经验,加强基本概念各实验作业巩固和检验所学内容:使用词汇表附录,解释和数据规范数据挖掘学科专业术语:使用适合教学的简单易用的Weka和通用的MSExcel软件工具实施数据挖掘验证和体验数据挖掘的精妙。