您好,欢迎光临有路网!
信息论基础(英文版)
QQ咨询:
有路璐璐:

信息论基础(英文版)

  • 作者:杨伟豪
  • 出版社:科学出版社
  • ISBN:9787030344564
  • 出版日期:2012年07月01日
  • 页数:412
  • 定价:¥89.00
  • 分享领佣金
    手机购买
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    内容提要
    《信息论基础(英文版)》作者(杨伟豪)现为香港中文大学网络编码研究所主任,是网络编码理论的提出者之一。本书原版自2002年出版以来,被哥伦比亚大学、康奈尔大学、麻省理工学院、斯坦福大学等美国**学府所采用,是信息理论方面的重要教材。本书首先介绍了信息论的经典内容,然后全面详细地论述了,度量、网络编码、Shannon型与非Shannon型信息不等式等理论,以及熵函数与群论之间的关系。《信息论基础(英文版)》中配有大量的实例、插图和习题,适合作为通信、电子信息、计算机等专业的高��级本科生和研究生的教材,也可供相关领域的科研人员参考。
    目录
    1. THE SCIENCE OF INFORMATION
    2. INFORMATION MEASURES
    2.1 Independence and Markov Chai
    2.2 Shannon's Information Measures
    2.3 Continuity of Shannon's Information Measures
    2.4 Chain Rules
    2.5 Informational Divergence
    2.6 The Basic Inequalities
    2.7 Some Useful Information Inequalities
    2.8 Fano's Inequality
    2.9 Entropy Rate of Stationary Source
    Problems
    Historical Notes
    3. ZERO-ERROR DATA COMPRESSION
    3.1 The Entropy Bound
    3.2 Prefix Codes
    3.2.1 Definition and Existence
    3.2.2 Huffman Codes
    3.3 Redundancy of Prefix Codes
    Problems
    Historical Notes
    4. WEAK TYPICALITY
    4.1 The Weak AEP
    4.2 The Source Coding Theorem
    4.3 Efficient Source Coding
    4.4 The Shannon-McMiilan-BreimanTheorem
    Problems
    Historical Notes
    5. STRONG TYPICALITY
    5.1 StrongAEP
    5.2 Strong Typicality Veus Weak Typicality
    5.3 Joint Typicality
    5.4 An Interpretation of the Basic Inequalities
    Problems
    Historical Notes
    6. THE/-MEASURE
    6.1 Preliminaries
    6.2 The/-Measure for Two Random Variables
    6.3 Cotruction of the/-Measure ч*
    6.4 #* Can be Negative
    6.5 Information Diagrams
    6.6 Examples of Applicatio
    Appendix 6.A: A Variation of the Inclusion-Exclusion Formula
    Problems
    Historical Notes
    7. MARKOV STRUCTURES
    7.1 Conditional Mutual Independence
    7.2 Full Conditional Mutual Independence
    7.3 Markov Random Field
    7.4 Markov Chain
    Problems
    Historical Notes
    8. CHANNEL CAPACITY
    8.1 Discrete MemorylessChannels
    8.2 The Channel Coding Theorem
    8.3 The Convee
    8.4 Achievability of the Channel Capacity
    8.5 A Discussion
    8.6 Feedback Capacity
    8.7 Separation of Source and Channel Coding
    Problems
    Historical Notes
    9. RATE-DISTORTION THEORY
    9.1 Single-Letter Distortion Measures
    9.2 The Rate-Distortion Function R(D)
    9.3 The Rate-Distortion Theorem
    9.4 The Convee
    9.5 Achievability of RI(D)
    Problems
    Historical Notes
    10. THE BLAHUT-ARIMOTO ALGORITHMS
    10.I Alternating Optimization
    10.2 The Algorithms
    10.2.1 Channel Capacity
    10.2.2 The Rate-Distortion Function
    10.3 Convergence
    10.3.1- A Sufficient Condition
    10.3.2 Convergence to the Channel Capacity
    Problems
    Historical Notes
    11. SINGLE-SOURCE NETWORK CODING
    11.1 A Point-to-Point Network
    11.2 What is Network Coding?
    11.3 A Network Code
    11.4 The Max-Flow Bound
    11.5 Achievability of the Max-Flow Bound
    11.5.1 Acyclic Networks
    11.5.2 Cyclic Networks
    Problems
    Historical Notes
    12. INFORMATION INEQUALITIES
    12.1 The Region Fn
    12.2 Information Expressio in Canonical Form
    12.3 A Geometrical Framework
    12.3.1 Uncotrained Inequalities
    12.3.2 Cotrained Inequalities
    12.3.3 Cotrained Identities
    12.4 Equivalence of Cotrained Inequalities
    12.5 The Implication Problem of Conditional Independence
    Problems
    Historical Notes
    13 SHANNON-TYPE INEQUALITIES
    13.1 The Elemental Inequalities
    13.2 A Linear Programming Approach
    13.2.1 Uncotrained Inequalities
    13.2.2 Cotrained Inequalities and Identities
    13.3 A Duality
    13.4 Machine Proving - ITIP
    13.5 Tackling the Implication Problem
    13.6 Minimality of the Elemental Inequalities
    Appendix 13.A: The Basic Inequalities and the Polymatroidal
    Axioms
    Problems
    Historical Notes
    14. BEYOND SHANNON-TYPE INEQUALITIES
    14.1 Characterizatio of г2,г3, and гn
    14.2 A Non-Shannon-Type Uncotrained Inequality
    14.3 A Non-Shannon-Type Cotrained Inequality
    14.4 Applicatio
    Problems
    Historical Notes
    15. MULTI-SOURCE NETWORK CODING
    15.1 Two Characteristics
    15.1.1 The Max-Flow Bounds
    15.1.2 Superposition Coding
    15.2 Examples of Application
    15.2.1 Multilevel Diveity Coding
    15.2.2 Satellite Communication Network
    15.3 A Network Code for Acyclic Networks
    15.4 An Inner Bound
    15.5 An Outer Bound
    15.6 The LP Bound and Its Tightness
    15.7 Achievability of Rin
    Appendix 15.A: Approximation of Random Variables with
    Infinite Alphabets
    Problems
    Historical Notes
    16. ENTROPY AND GROUPS
    16.1 Group Preliminaries
    16.2 Group-Characterizable Entropy Functio
    16.3 A Group Characterization of гn
    16.4 Information Inequalities and Group Inequalities
    Problems
    Historical Notes
    Bibliography
    Index
    编辑推荐语
    杨伟豪编著的《信息论基础(英文版)》原版自2002年出版以来,被哥伦比亚大学、康奈尔大学、麻省理工学院、斯坦福大学等美国**学府所采用,是信息理论方面的重要教材。本书首先介绍了信息论的经典内容,然后全面详细地论述了,一度量、网络编码、Shannon型与非Shannon型信息不等式等理论,以及熵函数与群论之间的关系。书中配有大量的实例、插图和习题,适合作为通信、电子信息、计算机等专业的高年级本科生和研究生的教材。也可供相关领域的科研人员参考。

    与描述相符

    100

    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外