您好,欢迎光临有路网!
微积分(英文版 原书第9版)
QQ咨询:
有路璐璐:

微积分(英文版 原书第9版)

  • 作者:(美)沃伯格(Varberg D) 柏塞尔(Purcell E.J) 里格登(Rigdon S.E)
  • 出版社:机械工业出版社
  • ISBN:9787111275985
  • 出版日期:2009年08月01日
  • 页数:774
  • 定价:¥68.00
  • 分享领佣金
    手机购买
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    内容提要
    这是一本在美国大学中使用面比较广泛的微积分教材。有重视应用、便于自学、习题数量与内容比较丰富等特点。而与其他美国教材的差别在于严谨性,本书许多定理都有较严谨的证明,这一点与我国许多现行的理工科微积分教材比较类似。在美国也是另一种风格的教材。
    本书强调应用,习题数量多,类型多,重视不同数学学科之间的交叉,强调其实际背景,反映当代科技发展。每章之后有附加内容,有利用图形计算器或数学软件计算的习题或带研究性的小题目等。
    目录
    出版说明

    Preface
    0 Preliminaries
    0.1 Real Numbers.Estimation,and Logic
    0.2 Inequalities and Absolute Values
    0.3 The Rectangular Coordinate System
    0.4 Graphs of Equations
    0.5 Functions and Their Graphs
    0.6 Operations on Functions
    0.7 Trigonometric Functions
    0.8 Chapter Review
    Review and Preview Problems
    1 Limits
    1.1 Introduction to Limits
    1.2 Rigorous Study of Limits
    1.3 Limit Theorems
    1.4 Limits Involving Trigonometric Functions
    1.5 Limits at Infinity;Infinite Limits
    1.6Continuity of Functions
    1.7Chapter Review
    Review and Preview Problems
    2 The Derivative
    2.1 Two Problems with One Theme
    2.2 The Derivative
    2.3 Rules for Finding Derivatives
    2.4 Derivatives of Trigonometric Functions
    2.5 The Chain Rule
    2.6 Higher.Order Derivatives
    2.7 Implicit Differentiation
    2.8 Related Rates
    2.9 Differentials and Approximations
    2.10 Chapter Review
    Review and Preview Problems
    3 Applications of the Derivative
    3.1 Maxima and Minima
    3.2 Monotonicity and Concavity
    3.3 Local Extrema and Extrema on Open Intervals
    3.4 Practical Problems
    3.5 Graphing Functions Using Calculus
    3.6 The Mean Value Theorem for Derivatives
    3.7 Solving Equations Numerically
    3.8 Antiderivatives
    3.9 Introduction to Differential Equations
    3.10 Chapter Review
    Review and Preview Problems
    4 The Deftnite Integral
    4.1 Introduction to Area
    4.2 The Definite Integral
    4.3 The First Fundamental Theorem of Calculus
    4.4 The Second Fundamental Theorem of Calculus and the Method of Substitution
    4.5 The Mean Value Theorem for Integrals and the Use of Symmetry
    4.6 Numerical Integration
    4.7 Chapter Review
    Review and Preview Problems
    5 Applications of the Integral
    5.1 The Area of a Plane Region
    5.2 volumes of Solids:Slabs.Disks,Wlashers
    5.3 Volumes of Solids of Revolution:Shells
    5.4 Length of a Plane Curve
    5.5 Work and Fluid Force
    5.6 Moments and Center of Mass
    5.7 Probability and Random Variabtes
    5.8 Chapter Review322
    Review and Preview Problems
    6 Transcendental Functions
    6.1 The Natural Logarithm Function
    6.2 Inverse Functions and Their Derivatives
    6.3 The Natural Exponential Function
    6.4 General Exponential and Logarithmic Functions
    6.5 Exponential Growth and Decay
    6.6 First.Order Linear Differential Equations
    6.7 Approximations for Differential Equations
    6.8 The Inverse Trigonometric Functions and Their Derivatives
    6.9 The Hyperbolic Functions and Their Inverses
    6.10 Chapter Review
    Review and Preview Problems
    7 Techniques of Integration
    7.1 Basic Integration Rules
    7.2 Integration by Parts
    7.3 Some Trigonometric Integrals
    7.4 Rationalizing Substitutions
    7.5 Integration of Rational Functions Using Partial Fractions
    7.6 Strategies for Integration
    7.7 Chapter Review
    Review and Preview Problems
    8 Indeterminate Forms and Improper Integrals
    9 Infinite Series
    10 Conics and Polar Coordinates
    11 Geometry in Space and Vectors
    12 Derivatives for Functions of Two or More Variables
    13 Multiple Integrals
    14 Vector Calculus
    AppendixA-1
    教辅材料说明
    教辅材料申请表

    与描述相符

    100

    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外