第二章 控制系统的数学模型
2.1 控制系统的时域数学模型
控制系��的数学模型是描述控制系统内部物理量(或变量)之间关系的数学表达式。在静态条件下(即变量各阶导数为零),描述变量之间关系的代数方程叫做静态数学模型;而描述变量各阶导数之间关系的微分方程叫动态数学模型。在控制系统的分析和设计中,首先要建立系统的数学模型。通过数学模型来研究自动控制系统,可以摆脱各种不同类型系统的外部特征,研究其内在共性运动规律。
建立控制系统数学模型的方法有分析法和实验法两种。分析法是对系统各部分的运动机理进行分析,根据它们所依据的物理规律或化学规律分别列写相应的运动方程。实验法是人为地给系统施加某种测试信号,记录其输出响应,并用适当的数学模型去逼近,这种方法又称为系统辨识。
常用的数学模型有微分方程,传递函数,结构图,信号流图,频率特性以及状态空间描述等。控制系统如按照数学模型分类的话,可以分为线性和非线性系统,定常系统和时变系统。
建立系统数学模型的主要目的是为了分析系统的性能。如图2—1为由数学模型求系统性能指标的主要方法。
……